OFFSET
0,1
COMMENTS
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,-4).
FORMULA
O.g.f.: (3 - 10*x) / ((1 - x)*(1 - 4*x)). - Colin Barker, Nov 10 2018
E.g.f.: (1/3)*(7*exp(x) + 2*exp(4*x)). - Stefano Spezia, Nov 10 2018
a(n) = 5*a(n-1) - 4*a(n-2), a(0) = 3, a(1) = 5.
a(n) = 4*a(n-1) - 7, a(0) = 3.
a(n) = (2/3)*(4^n-1)/3 + 3.
a(n) = A193579(n)/3.
MATHEMATICA
a[n_]:= (2*4^n + 7)/3; Array[a, 20, 0] (* or *)
CoefficientList[Series[1/3 (7 E^x + 2 E^(4 x)), {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Nov 10 2018 *)
PROG
(PARI) a(n) = (2*4^n + 7)/3; \\ Michel Marcus, Nov 08 2018
(PARI) Vec((3 - 10*x) / ((1 - x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Nov 10 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 07 2018
EXTENSIONS
More terms from Michel Marcus, Nov 08 2018
STATUS
approved