login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321241
Expansion of Product_{i>=1, j>=1, k>=1} (1 - x^(i*j*k))/(1 + x^(i*j*k)).
3
1, -2, -4, 4, 8, 16, -12, -28, -28, -56, 64, 68, 152, 144, -20, -72, -678, -508, -424, 92, 824, 1512, 2204, 1036, 936, -1900, -2936, -6444, -5656, -4384, -4808, 6540, 10080, 21256, 20296, 24424, 13520, -7856, -28836, -55744, -72240, -92960, -48424, -40772, 36168, 106464, 199996
OFFSET
0,2
COMMENTS
Convolution inverse of A305050.
LINKS
FORMULA
G.f.: Product_{k>=1} ((1 - x^k)/(1 + x^k))^A007425(k).
G.f.: Product_{k>=1} theta_4(x^k)^tau(k), where theta_4() is the Jacobi theta function and tau() is the number of divisors. - Ilya Gutkovskiy, May 18 2019
MATHEMATICA
With[{nmax=50}, CoefficientList[Series[Product[(1 - x^(i*j*k))/(1 + x^(i*j*k)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}], {x, 0, nmax}], x]] (* G. C. Greubel, Nov 01 2018 *)
PROG
(PARI) m=50; x='x+O('x^m); Vec(prod(k=1, m, ((1-x^k)/(1+x^k))^sumdiv(k, x, sumdiv(x, y, 1 )))) \\ G. C. Greubel, Nov 01 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(&*[(&*[(1 - x^(i*j*k))/(1 + x^(i*j*k)): i in [1..m]]): j in [1..m]]): k in [1..m]]))); // G. C. Greubel, Nov 01 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Nov 01 2018
STATUS
approved