|
|
A223569
|
|
T(n,k)=Number of nXk 0..1 arrays with antidiagonals unimodal
|
|
7
|
|
|
2, 4, 4, 8, 16, 8, 16, 64, 64, 16, 32, 256, 448, 256, 32, 64, 1024, 3136, 3136, 1024, 64, 128, 4096, 21952, 34496, 21952, 4096, 128, 256, 16384, 153664, 379456, 379456, 153664, 16384, 256, 512, 65536, 1075648, 4174016, 6071296, 4174016, 1075648
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Table starts
....2.......4.........8..........16............32..............64
....4......16........64.........256..........1024............4096
....8......64.......448........3136.........21952..........153664
...16.....256......3136.......34496........379456.........4174016
...32....1024.....21952......379456.......6071296........97140736
...64....4096....153664.....4174016......97140736......2137096192
..128...16384...1075648....45914176....1554251776.....47016116224
..256...65536...7529536...505055936...24868028416...1034354556928
..512..262144..52706752..5555615296..397888454656..22755800252416
.1024.1048576.368947264.61111768256.6366215274496.500627605553152
|
|
LINKS
|
|
|
FORMULA
|
T(n,k) = product{ (1+(i*(i+1)/2))^2 , i=1..(min(n,k)-1) } * (1+(min(n,k)*(min(n,k)+1)/2))^(max(n,k)-min(n,k)+1)
|
|
EXAMPLE
|
Some solutions for n=4 k=4
..1..0..0..0....0..1..0..1....1..0..1..0....0..1..0..0....0..0..1..0
..1..1..1..0....1..1..1..1....0..1..0..0....0..0..1..1....0..1..1..1
..0..0..0..1....1..1..0..1....0..1..1..1....0..1..0..1....0..1..1..0
..0..1..0..0....1..0..1..0....1..0..0..1....0..0..1..1....1..1..1..0
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|