The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321190 a(n) = [x^n] 1/(1 - Sum_{k>=1} k^n*x^k/(1 - x^k)). 1
 1, 1, 6, 47, 778, 25476, 1752936, 242632397, 70015221566, 41446777283255, 49999934258165654, 125272856707074638221, 641938223803783115191706, 6731818441446626626586172740, 146378489075644780343627471981694, 6505906463580477520696075719916583118 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..15. FORMULA a(n) = [x^n] 1/(1 - Sum_{k>=1} sigma_n(k)*x^k). a(n) = [x^n] 1/(1 - Sum_{i>=1, j>=1} j^n*x^(i*j)). a(n) = [x^n] 1/(1 + x * (d/dx) log(Product_{k>=1} (1 - x^k)^(k^(n-1)))). MAPLE seq(coeff(series((1-add(k^n*x^k/(1-x^k), k=1..n))^(-1), x, n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 29 2018 MATHEMATICA Table[SeriesCoefficient[1/(1 - Sum[k^n x^k/(1 - x^k), {k, 1, n}]), {x, 0, n}], {n, 0, 15}] Table[SeriesCoefficient[1/(1 - Sum[DivisorSigma[n, k] x^k, {k, 1, n}]), {x, 0, n}], {n, 0, 15}] Table[SeriesCoefficient[1/(1 - Sum[Sum[j^n x^(i j), {j, 1, n}], {i, 1, n}]), {x, 0, n}], {n, 0, 15}] CROSSREFS Cf. A023887, A129921, A180305, A319647, A320649, A321042. Sequence in context: A332238 A353548 A192887 * A320403 A354067 A357430 Adjacent sequences: A321187 A321188 A321189 * A321191 A321192 A321193 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Oct 29 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 13:22 EDT 2024. Contains 372755 sequences. (Running on oeis4.)