login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357430
a(n) is the least integer > 1 such that its digit representation in base n is equal to the digit representation in base n of the initial terms of its set of divisors in increasing order.
1
6, 48, 6, 182, 8, 66, 10, 102, 12, 1586, 14, 198, 16, 258, 18, 345, 20, 402, 22, 486, 24, 306484, 26, 678, 28, 786, 30, 26102, 32, 1026, 34, 1158, 36, 1335, 38, 1446, 40, 1602, 42, 204741669824, 44, 1938, 46, 2118, 48, 2355, 50, 2502, 52, 2706, 54, 8199524, 56
OFFSET
2,1
LINKS
FORMULA
a(2*n) = 2*n + 2 for any n > 1. - Rémy Sigrist, Sep 29 2022
PROG
(PARI) isok(k, b) = my(s=[]); fordiv(k, d, s=concat(s, digits(d, b)); if (fromdigits(s, b)==k, return(1)); if (fromdigits(s, b)> k, return(0)));
a(n) = my(k=2); while(! isok(k, n), k++); k;
(Python)
from sympy import divisors
from sympy.ntheory import digits
from itertools import count, islice
def ok(n, b):
target, s = digits(n, b)[1:], []
if target[0] != 1: return False
for d in divisors(n):
s += digits(d, b)[1:]
if len(s) >= len(target): return s == target
elif not target[:len(s)] == s: return False
def a(n):
return next(i for d in count(1) for i in range(n**d, 2*n**d) if ok(i, n))
print([a(n) for n in range(2, 41)]) # Michael S. Branicky, Oct 05 2022
CROSSREFS
Cf. A175252 (base 10), A357428 (base 2), A357429 (base 3).
Sequence in context: A321190 A320403 A354067 * A323138 A000252 A078237
KEYWORD
nonn,base
AUTHOR
Michel Marcus, Sep 28 2022
EXTENSIONS
More terms from Rémy Sigrist, Sep 29 2022
STATUS
approved