login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320342
Maximum term in Cunningham chain of the first kind generated by the n-th prime.
0
47, 7, 47, 7, 47, 13, 17, 19, 47, 59, 31, 37, 167, 43, 47, 107, 59, 61, 67, 71, 73, 79, 167, 2879, 97, 101, 103, 107, 109, 227, 127, 263, 137, 139, 149, 151, 157, 163, 167, 347, 2879, 181, 383, 193, 197, 199, 211, 223, 227, 229, 467, 479, 241, 503, 257, 263, 269, 271, 277, 563, 283, 587, 307, 311, 313, 317, 331, 337, 347, 349
OFFSET
1,1
COMMENTS
No term is a Sophie Germain prime.
A181697 is the sequence of the lengths of the chains in the name.
EXAMPLE
a(1)=47 as prime(1)=2 and the Cunningham chain generated by 2 is (2,5,11,23,47), with maximum item 47.
MATHEMATICA
a[n_] := NestWhile[2#+1&, n, PrimeQ, 1, Infinity, -1]; a/@Prime@Range@70 (* Amiram Eldar, Dec 11 2018 *)
PROG
(Python)
def cunningham_chain(p, t):
# returns the Cunningham chain generated by p of type t (1 or 2)
from sympy.ntheory import isprime
if not(isprime(p)):
raise Exception("Invalid starting number! It must be prime")
if t!=1 and t!=2:
raise Exception("Invalid type! It must be 1 or 2")
elif t==1: k=t
else: k=-1
cunn_ch=[]
cunn_ch.append(p)
while isprime(2*p+k):
p=2*p+k
cunn_ch.append(p)
return(cunn_ch)
from sympy import prime
n=71
r=""
for i in range(1, n):
cunn_ch=(cunningham_chain(prime(i), 1))
last_item=cunn_ch[-1]
r += ", "+str(last_item)
print(r[1:])
CROSSREFS
Cf. A181697.
Sequence in context: A009038 A051319 A065610 * A217423 A033367 A052352
KEYWORD
nonn
AUTHOR
Pierandrea Formusa, Dec 10 2018
STATUS
approved