login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320122
Numbers that are not Keith numbers in any base.
0
12, 30, 390, 1170, 1200, 1560, 2340, 2760, 3120, 3900, 4680, 6120, 6240, 7680, 7800, 8460, 10020, 10140, 10950, 11580, 15090, 15480, 17160, 17580, 18360, 19140, 20280, 20700, 20940, 21480, 23040, 23280, 24060, 24210, 24960, 26550, 28740, 29250, 29520, 29670, 30060, 31080, 32400
OFFSET
1,1
COMMENTS
A number N >= 2 is a Keith number in a base b <= N if the Fibonacci sequence u(i) whose initial terms are the t digits of N in the base b, and later terms are given by rule that u(i) = sum of t previous terms, contains N itself. Here a(n) is the n-th number N that is not a Keith number in any base b <= N.
EXAMPLE
a(1) = 12 because 12 is not a Keith number in any base from 2 to 12, while all previous numbers are in some base.
For example, with b = 2, the sequence is : 1, 1, 0, 0, 2, 3, 5, 10, 20, ...; it doesn't contain 12. See A251703.
MAPLE
fibo:=proc(n, b) local L, m, M, k:
L:=convert(n, base, b):m:=nops(L):M:=seq(L[m+1-k], k=1..m):
while M[m]<n do M:=M, add(M[q], q=1..m): M:=seq(M[q], q=2..m+1) od:
if M[m]=n then true else false fi end:
test:=proc(n) local b:
for b from 2 to n do if fibo(n, b) then return(true) fi od:
return(false) end:
L:=NULL:for n from 2 to 1200 do if not(test(n)) then L:=L, n fi od:L;
PROG
(Python)
def digits(n, b):
r = []
m = n
while m > 0:
r = [m % b] + r
m = m // b
return r
def fibo(n, b):
L = digits(n, b)
m = len(L) - 1
while L[m] < n:
L.append(sum(k for k in L))
L.pop(0)
return L[m] == n
def test(n):
for b in range(2, n + 1):
if fibo(n, b):
return True
return False
print([n for n in range(2, 2001) if not test(n)])
(PARI) iskb(n, b) = if(n<b, return(0)); my(v=digits(n, b), t=#v); while(v[#v]<n, v=concat(v, sum(i=0, t-1, v[#v-i]))); v[#v]==n; \\ after A007629
isok(n) = if (n<=2, 0, for(b=2, n-1, if (iskb(n, b), return(0))); return (1)); \\ Michel Marcus, Oct 08 2018
CROSSREFS
Cf. A007629 (Keith numbers in base 10).
Sequence in context: A221520 A214311 A005147 * A007308 A065138 A279821
KEYWORD
nonn,base
AUTHOR
Robert FERREOL, Oct 06 2018
EXTENSIONS
More terms from Michel Marcus, Oct 08 2018
STATUS
approved