|
|
A279821
|
|
Composite numbers m with sqrt(m) not prime such that T(m) == 1 (mod m), where the central trinomial coefficient T(m) is the coefficient of x^m in the expansion of (x^2+x+1)^m.
|
|
0
|
|
|
12, 30, 902, 1360, 2450, 3730, 21475, 74945, 82208, 88282, 254677
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The author proved in arXiv:1610.03384 that T(p) == 1 (mod p^2) and T(p^2) == T(p) (mod p^3) for each prime p > 3, and conjectured that T(n) == 1 (mod n^2) fails for any composite number n.
Conjecture: Besides the listed 11 terms, the sequence has no other terms.
By our computation, if the 12th term exists, it should be greater than 6*10^6.
T(n) = A002426(n). - Michael Somos, Dec 19 2016
|
|
LINKS
|
Table of n, a(n) for n=1..11.
Zhi-Wei Sun, Supercongruences involving Lucas sequences, arXiv:1610.03384 [math.NT], 2016.
Zhi-Wei Sun, Characterizing primes via central trinomial coefficients, a Message to Number Theory List, Dec. 7, 2016.
|
|
EXAMPLE
|
a(1) = 12 since T(12) = 73789 = 1 + 12*6149.
|
|
MATHEMATICA
|
T[0]=1;
T[1]=1;
T[n_]:=T[n]=((2n-1)T[n-1]+3(n-1)T[n-2])/n;
n=0; Do[If[PrimeQ[m]==False&&PrimeQ[Sqrt[m]]==False&&Mod[T[m]-1, m]==0, n=n+1; Print[n, " ", m]], {m, 2, 300000}]
|
|
CROSSREFS
|
Cf. A000040, A002426, A002808, A277640.
Sequence in context: A320122 A007308 A065138 * A008841 A038624 A302362
Adjacent sequences: A279818 A279819 A279820 * A279822 A279823 A279824
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Zhi-Wei Sun, Dec 19 2016
|
|
STATUS
|
approved
|
|
|
|