login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214311
a(n) is the number of representative five-color bracelets (necklaces with turning over allowed) with n beads, for n >= 5.
6
12, 30, 150, 633, 3260, 16212, 66810, 298495, 1410402, 6403842, 31103899, 135342046, 633228696, 2936824916, 13676037486, 65355191817, 298065986582, 1398226666434, 6585151203697, 30958838054304, 148994847644780
OFFSET
5,1
COMMENTS
This is the fifth column (m=5) of triangle A213940.
The relevant p(n,5)= A008284(n,5) representative color multinomials have exponents (signatures) from the five-part partitions of n, written with nonincreasing parts. E.g., n=7: [3,1,1,1,1] and [2,2,1,1,1] (p(7,5)=2). The corresponding representative bracelets have the five-color multinomials c[1]^3*c[2]*c[3]*c[4]*c[5] and c[1]^2*c[2]^2*c[3]*c[4]*c[5].
Number of n-length bracelets w over a 5-ary alphabet {a1,a2,...,a5} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a5) >= 1, where #(w,x) counts the letters x in word w (bracelet analog of A226884). The number of 5 color bracelets up to permutations of colors is given by A056360. - Andrew Howroyd, Sep 26 2017
LINKS
FORMULA
a(n) = A213940(n,5), n >= 5.
a(n) = sum(A213939(n,k),k= b(n,5)..b(n,6)-1), n>=6, with b(n,m) = A214314(n,m) the position where the first m part partition of n appears in the Abramowitz-Stegun ordering of partitions (see A036036 for the reference and a historical comment). a(5) = A213939(5,b(5,5)) = A213939(5,7) = 12.
EXAMPLE
a(5) = A213940(5,5) = A213939(5,7) = 12 from the representative bracelets (with colors j for c[j], j=1,...,5) 12345, 12354, 12435, 12453, 12534, 12543, 13245, 13254, 13425, 13524, 14235 and 14325, all taken cyclically.
CROSSREFS
Cf. A213939, A213940, A214309 (m=4 case), A214313 (m=5, all bracelets).
Sequence in context: A117313 A080563 A221520 * A005147 A320122 A007308
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Aug 08 2012
STATUS
approved