The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214312 a(n) is the number of all four-color bracelets (necklaces with turning over allowed) with n beads and the four colors are from a repertoire of n distinct colors, for n >= 4. 4
 3, 120, 2040, 21420, 183330, 1320480, 8691480, 52727400, 303958710, 1674472800, 8928735816, 46280581620, 234611247780, 1166708558400, 5710351190400, 27565250985360, 131495088522060, 620771489730000, 2903870526350640, 13473567673441260, 62061657617625204, 283995655732351200 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,1 COMMENTS This is the fourth column (m=4) of triangle A214306. Each 4 part partition of n, with the parts written in nonincreasing order, defines a color signature. For a given color signature, say  [p, p, p, p], with p >= p  >= p >= p >= 1, there are A213941(n,k)= A035206(n,k)*A213939(n,k) bracelets if this signature corresponds (with the order of the parts reversed) to the k-th partition of n in Abramowitz-Stegun (A-St) order. See A213941 for more details. Here all p(n,4)= A008284(n,4)  partitions of n with 4 parts are considered. The color repertoire for a bracelet with n beads is [c, ..., c[n]]. Compare this with A032275 where also bracelets with less than four colors are included, and the color repertoire is only [c, c, c, c] for all n. LINKS Andrew Howroyd, Table of n, a(n) for n = 4..100 FORMULA a(n) = A214306(n,4), n >= 4. a(n) = sum(A213941(n,k),k = A214314(n,4) .. (A214314(n,4) - 1 + A008284(n,4))), n >= 4. a(n) = binomial(n,4) * A056344(n). - Andrew Howroyd, Mar 25 2017 EXAMPLE a(5) = A213941(5,6) = 120 from the bracelet (with colors j for c[j], j=1, 2, ..., 5) 11234, 11243, 11324, 12134, 13124 and 14123, all six taken cyclically, each representing a class of order A035206(5,6) = 20 (if all 5 colors are used). For example, cyclic(11342) becomes equivalent to cyclic(11243) by turning over or reflection. The multiplicity 20 depends only on the color signature. MATHEMATICA t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); a56344[n_, k_] := Sum[(-1)^i*Binomial[k, i]*t[n, k - i], {i, 0, k - 1}]; a[n_] := Binomial[n, 4]*a56344[n, 4]; Table[a[n], {n, 4, 25}] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *) CROSSREFS Cf. A213941, A214306, A214309 (m=4, representative bracelets), A214313 (m=5). Sequence in context: A316445 A316127 A317433 * A343831 A185554 A134230 Adjacent sequences:  A214309 A214310 A214311 * A214313 A214314 A214315 KEYWORD nonn AUTHOR Wolfdieter Lang, Jul 31 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 18:45 EDT 2021. Contains 348175 sequences. (Running on oeis4.)