OFFSET
1,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..350
Federico Ardila, Matthias Beck, and Jodi McWhirter, The Arithmetic of Coxeter Permutahedra, arXiv:2004.02952 [math.CO], 2020.
S. Azam, M. B. Soltani, M. Tomie and Y. Yoshii, A graph theoretical classification for reflectable bases, PRIMS, Vol 55 no 4, (2019), 689-736.
Theo Douvropoulos, Joel Brewster Lewis, and Alejandro H. Morales, Hurwitz numbers for reflection groups III: Uniform formulas, arXiv:2308.04751 [math.CO], 2023, see p. 11.
FORMULA
E.g.f.: Sum_{m>=2} (1/(4*m)) (Sum_{k>=1} k^(k-1)*(2*x)^k/k!)^m.
a(n) = (n-1)*2^(n-2)*A001863(n). - M. F. Hasler, Dec 09 2018
a(n) = 2^(n-2)*A000435(n). - Chai Wah Wu, Apr 25 2023
MATHEMATICA
nmax = 20; Rest[CoefficientList[Series[Sum[1/(4*m)*(Sum[k^(k-1)*(2*x)^k/k!, {k, 1, nmax}])^m, {m, 2, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Oct 23 2018 *)
PROG
(PARI) seq(n)={Vec(serlaplace(sum(m=2, n, (sum(k=1, n, k^(k-1)*(2*x)^k/k!) + O(x^n))^m/(4*m))), -n)} \\ Andrew Howroyd, Nov 07 2018
(PARI) apply( A320064(n)=A001863(n)*(n-1)<<(n-2), [1..20]) \\ Defines the function A320064. The additional apply(...) provides a check and illustration. - M. F. Hasler, Dec 09 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (&+[(&+[j^(j-1)*(2*x)^j/Factorial(j): j in [1..m+2]])^k/(4*k): k in [2..m+1]]) )); [0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, Dec 10 2018
(Python)
from math import comb
def A320064(n): return 0 if n<2 else ((sum(comb(n, k)*(n-k)**(n-k)*k**k for k in range(1, (n+1>>1)))<<1) + (0 if n&1 else comb(n, m:=n>>1)*m**n))//n<<n-2 # Chai Wah Wu, Apr 25-26 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Masaya Tomie, Oct 04 2018
STATUS
approved