login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319687
a(n) = A318509(n) - A002487(n).
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 4, 0, 4, 0, 0, 2, 0, 0, 6, 0, 8, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, -2, -6, 0, -4, 0, 0, 0, -4, 0, -6, 0, 10, 0, 0, 0, 4, 2, 0, -2, 0, 0, 0
OFFSET
1,15
COMMENTS
All terms seem to be even. See the conjecture given in A261179.
FORMULA
a(n) = A318509(n) - A002487(n).
PROG
(PARI)
A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487
A318509(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = A002487(f[i, 1])); factorback(f); };
A319687(n) = (A318509(n) - A002487(n));
(Python)
from math import prod
from functools import reduce
from sympy import factorint
def A319687(n): return prod(sum(reduce(lambda x, y:(x[0], x[0]+x[1]) if int(y) else (x[0]+x[1], x[1]), bin(p)[-1:2:-1], (1, 0)))**e for p, e in factorint(n).items())-sum(reduce(lambda x, y:(x[0], x[0]+x[1]) if int(y) else (x[0]+x[1], x[1]), bin(n)[-1:2:-1], (1, 0))) # Chai Wah Wu, May 18 2023
CROSSREFS
KEYWORD
sign,look
AUTHOR
Antti Karttunen, Oct 02 2018
STATUS
approved