login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A318509(n) - A002487(n).
3

%I #16 May 19 2023 01:50:06

%S 0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,-2,0,0,0,2,0,0,0,0,2,0,0,4,0,

%T 0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,2,-2,0,0,0,4,0,4,0,0,2,0,0,6,0,8,4,0,

%U 0,0,0,0,0,0,0,0,0,-2,0,0,0,2,0,0,-2,-6,0,-4,0,0,0,-4,0,-6,0,10,0,0,0,4,2,0,-2,0,0,0

%N a(n) = A318509(n) - A002487(n).

%C All terms seem to be even. See the conjecture given in A261179.

%H Antti Karttunen, <a href="/A319687/b319687.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/St#Stern">Index entries for sequences related to Stern's sequences</a>

%F a(n) = A318509(n) - A002487(n).

%o (PARI)

%o A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487

%o A318509(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = A002487(f[i, 1])); factorback(f); };

%o A319687(n) = (A318509(n) - A002487(n));

%o (Python)

%o from math import prod

%o from functools import reduce

%o from sympy import factorint

%o def A319687(n): return prod(sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(p)[-1:2:-1],(1,0)))**e for p, e in factorint(n).items())-sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(n)[-1:2:-1],(1,0))) # _Chai Wah Wu_, May 18 2023

%Y Cf. A002487, A261179, A317837, A318509, A323365.

%K sign,look

%O 1,15

%A _Antti Karttunen_, Oct 02 2018