login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319552
Expansion of 1/theta_4(q)^3 in powers of q = exp(Pi i t).
4
1, 6, 24, 80, 234, 624, 1552, 3648, 8184, 17654, 36816, 74544, 147056, 283440, 535008, 990912, 1803882, 3232224, 5707624, 9943536, 17106960, 29088352, 48922320, 81438528, 134261584, 219336630, 355242288, 570675904, 909674688, 1439394192, 2261635168, 3529838208
OFFSET
0,2
LINKS
FORMULA
Convolution inverse of A213384.
a(n) = (-1)^n * A004404(n).
a(0) = 1, a(n) = (6/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0.
G.f.: Product_{k>=1} ((1 - x^(2k))/(1 - x^k)^2)^3.
PROG
(PARI) N=99; x='x+O('x^N); Vec(prod(k=1, N, ((1-x^(2*k))/(1-x^k)^2)^3))
CROSSREFS
1/theta_4(q)^b: A015128 (b=1), A001934 (b=2), this sequence (b=3), A284286 (b=4), A319553 (b=8), A319554 (b=12).
Cf. A002131, A002448 (theta_4(q)), A004404, A213384.
Sequence in context: A350413 A361474 A004404 * A201189 A001788 A068711
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 22 2018
STATUS
approved