login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319550
a(n) = 1*2*3*4*5*6*7*8*9 - 10*11*12*13*14*15*16*17*18 + 19*20*21*22*23*24*25*26*27 - ... + (up to n).
9
1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 362870, 362770, 361560, 345720, 122640, -3240720, -57294720, -979816320, -17642862720, -17642862701, -17642862340, -17642854740, -17642687160, -17638824840, -17545953600, -15220134720, 45348065280, 1683112193280
OFFSET
1,2
COMMENTS
In general, for alternating sequences that multiply the first k natural numbers, and subtract/add the products of the next k natural numbers (preserving the order of operations up to n), we have a(n) = (-1)^floor(n/k) * Sum_{i=1..k-1} (1-sign((n-i) mod k)) * (Product_{j=1..i} (n-j+1)) + Sum_{i=1..n} (-1)^(floor(i/k)+1) * (1-sign(i mod k)) * (Product_{j=1..k} (i-j+1)). Here k=9.
An alternating version of A319211.
LINKS
FORMULA
a(n) = (-1)^floor(n/9) * Sum_{i=1..8} (1-sign((n-i) mod 9)) * (Product_{j=1..i} (n-j+1)) + Sum_{i=1..n} (-1)^(floor(i/9)+1) * (1-sign(i mod 9)) * (Product_{j=1..9} (i-j+1)).
EXAMPLE
a(1) = 1;
a(2) = 1*2 = 2;
a(3) = 1*2*3 = 6;
a(4) = 1*2*3*4 = 24;
a(5) = 1*2*3*4*5 = 120;
a(6) = 1*2*3*4*5*6 = 720;
a(7) = 1*2*3*4*5*6*7 = 5040;
a(8) = 1*2*3*4*5*6*7*8 = 40320;
a(9) = 1*2*3*4*5*6*7*8*9 = 362880;
a(10) = 1*2*3*4*5*6*7*8*9 - 10 = 362870;
a(11) = 1*2*3*4*5*6*7*8*9 - 10*11 = 362770;
a(12) = 1*2*3*4*5*6*7*8*9 - 10*11*12 = 361560;
a(13) = 1*2*3*4*5*6*7*8*9 - 10*11*12*13 = 345720;
a(14) = 1*2*3*4*5*6*7*8*9 - 10*11*12*13*14 = 122640;
a(15) = 1*2*3*4*5*6*7*8*9 - 10*11*12*13*14*15 = -3240720;
a(16) = 1*2*3*4*5*6*7*8*9 - 10*11*12*13*14*15*16 = -57294720;
a(17) = 1*2*3*4*5*6*7*8*9 - 10*11*12*13*14*15*16*17 = -979816320;
a(18) = 1*2*3*4*5*6*7*8*9 - 10*11*12*13*14*15*16*17*18 = -17642862720;
a(19) = 1*2*3*4*5*6*7*8*9 - 10*11*12*13*14*15*16*17*18 + 19 = -17642862701; etc.
MATHEMATICA
Table[Total[Times@@@Partition[Riffle[Times@@@Partition[Range[n], UpTo[9]], {1, -1}, {1, -1, 2}], 2]], {n, 30}] (* Harvey P. Dale, Oct 05 2024 *)
CROSSREFS
For similar sequences, see: A001057 (k=1), A319373 (k=2), A319543 (k=3), A319544 (k=4), A319545 (k=5), A319546 (k=6), A319547 (k=7), A319549 (k=8), this sequence (k=9), A319551 (k=10).
Cf. A319211.
Sequence in context: A182287 A248778 A033647 * A109834 A131451 A084012
KEYWORD
sign,easy
AUTHOR
Wesley Ivan Hurt, Sep 22 2018
STATUS
approved