login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319306
Expansion of (7 * theta_4(q)^20 * theta_2(q)^8 + 7 * theta_4(q)^24 * theta_2(q)^4 + 2 * theta_4(q)^28)/(2 * delta^2) in powers of q = exp(Pi i t), where delta is A000594.
1
1, 0, -232, 0, 86064, -1835008, 23619232, -229638144, 1841202076, -12765888512, 78856617456, -442924793856, 2295931514240, -11106754756608, 50583249259456, -218397947199488, 899050944837546, -3545383150551040, 13446464974112552, -49213617532305408
OFFSET
-4,3
LINKS
H. Cohn, A. Kumar, S. Miller, D. Radchenko, M. Viazovska, The sphere packing problem in dimension 24, Annals of Mathematics, 185 (3) (2017), 1017-1033.
Wikipedia, Sphere packing
EXAMPLE
Let q = exp(Pi i t).
theta_2(q)^4 = 16*q + 64*q^3 + ... .
theta_4(q)^4 = 1 - 8*q + 24*q^2 - 32*q^3 + ... .
delta = q^2 - 24*q^4 + 252*q^6 - 1472*q^8 + ... .
(7 * theta_4(q)^20 * theta_2(q)^8 + 7 * theta_4(q)^24 * theta_2(q)^4 + 2 * theta_4(q)^28)/delta^2
= 2*q^(-4) - 464*q^(-2) + 172128 - 3670016*q + 47238464*q^2 - 459276288*q^3 + ... .
CROSSREFS
Cf. A000594, A007331, A008438 (theta_2(q)^4/(16*q)), A096727 (theta_4(q)^4), A319134, A319294, A319308 (theta_4(q)^20), A319309 (theta_4(q)^24), A319310 (theta_4(q)^28).
Sequence in context: A172908 A359011 A172935 * A280538 A050423 A126818
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 16 2018
STATUS
approved