Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 18 2018 07:48:21
%S 1,0,-232,0,86064,-1835008,23619232,-229638144,1841202076,
%T -12765888512,78856617456,-442924793856,2295931514240,-11106754756608,
%U 50583249259456,-218397947199488,899050944837546,-3545383150551040,13446464974112552,-49213617532305408
%N Expansion of (7 * theta_4(q)^20 * theta_2(q)^8 + 7 * theta_4(q)^24 * theta_2(q)^4 + 2 * theta_4(q)^28)/(2 * delta^2) in powers of q = exp(Pi i t), where delta is A000594.
%H Seiichi Manyama, <a href="/A319306/b319306.txt">Table of n, a(n) for n = -4..10000</a>
%H H. Cohn, A. Kumar, S. Miller, D. Radchenko, M. Viazovska, <a href="https://www.jstor.org/stable/26395748">The sphere packing problem in dimension 24</a>, Annals of Mathematics, 185 (3) (2017), 1017-1033.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Sphere_packing">Sphere packing</a>
%e Let q = exp(Pi i t).
%e theta_2(q)^4 = 16*q + 64*q^3 + ... .
%e theta_4(q)^4 = 1 - 8*q + 24*q^2 - 32*q^3 + ... .
%e delta = q^2 - 24*q^4 + 252*q^6 - 1472*q^8 + ... .
%e (7 * theta_4(q)^20 * theta_2(q)^8 + 7 * theta_4(q)^24 * theta_2(q)^4 + 2 * theta_4(q)^28)/delta^2
%e = 2*q^(-4) - 464*q^(-2) + 172128 - 3670016*q + 47238464*q^2 - 459276288*q^3 + ... .
%Y Cf. A000594, A007331, A008438 (theta_2(q)^4/(16*q)), A096727 (theta_4(q)^4), A319134, A319294, A319308 (theta_4(q)^20), A319309 (theta_4(q)^24), A319310 (theta_4(q)^28).
%K sign
%O -4,3
%A _Seiichi Manyama_, Sep 16 2018