login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319109
Expansion of Product_{k>=1} 1/(1 + x^k)^(k-1).
0
1, 0, -1, -2, -2, -2, 0, 2, 7, 8, 12, 10, 9, -2, -10, -32, -40, -62, -62, -70, -37, -20, 57, 106, 224, 272, 388, 376, 431, 272, 192, -184, -414, -1012, -1321, -2020, -2157, -2700, -2318, -2352, -1014, -272, 2280, 3798, 7464, 9200, 13257, 13958, 17098, 14846, 15266
OFFSET
0,4
COMMENTS
Convolution of A000009 and A255528.
Convolution inverse of A052812.
FORMULA
G.f.: exp(Sum_{k>=1} (-1)^k*x^(2*k)/(k*(1 - x^k)^2)).
MAPLE
a:=series(mul(1/(1+x^k)^(k-1), k=1..100), x=0, 51): seq(coeff(a, x, n), n=0..50); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^(k - 1), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 50; CoefficientList[Series[Exp[Sum[(-1)^k x^(2 k)/(k (1 - x^k)^2), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d) d (d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 50}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Sep 10 2018
STATUS
approved