The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319108 Expansion of Product_{k>=1} (1 - x^k)^(k-1). 0
 1, 0, -1, -2, -3, -2, -1, 4, 8, 14, 17, 18, 9, -4, -27, -58, -88, -114, -122, -106, -48, 48, 200, 376, 577, 746, 862, 840, 646, 208, -486, -1450, -2622, -3888, -5086, -5950, -6204, -5492, -3547, -44, 5036, 11732, 19582, 28034, 35932, 42042, 44519, 41660, 31450, 12382, -16721 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Convolution of A000041 and A073592. Convolution inverse of A052847. LINKS FORMULA G.f.: exp(Sum_{k>=1} (sigma_1(k) - sigma_2(k))*x^k/k), where sigma_1(k) = sum of divisors of k (A000203) and sigma_2(k) = sum of squares of divisors of k (A001157). MAPLE a:=series(mul((1-x^k)^(k-1), k=1..100), x=0, 51): seq(coeff(a, x, n), n=0..50); # Paolo P. Lava, Apr 02 2019 MATHEMATICA nmax = 50; CoefficientList[Series[Product[(1 - x^k)^(k - 1), {k, 1, nmax}], {x, 0, nmax}], x] nmax = 50; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, k] - DivisorSigma[2, k]) x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (1 - d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 50}] CROSSREFS Cf. A000041, A000203, A001157, A052847, A073592, A299019. Sequence in context: A104411 A216084 A055101 * A238165 A081316 A226362 Adjacent sequences:  A319105 A319106 A319107 * A319109 A319110 A319111 KEYWORD sign AUTHOR Ilya Gutkovskiy, Sep 10 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 16:50 EDT 2021. Contains 347586 sequences. (Running on oeis4.)