login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} 1/(1 + x^k)^(k-1).
0

%I #6 Apr 03 2019 02:55:14

%S 1,0,-1,-2,-2,-2,0,2,7,8,12,10,9,-2,-10,-32,-40,-62,-62,-70,-37,-20,

%T 57,106,224,272,388,376,431,272,192,-184,-414,-1012,-1321,-2020,-2157,

%U -2700,-2318,-2352,-1014,-272,2280,3798,7464,9200,13257,13958,17098,14846,15266

%N Expansion of Product_{k>=1} 1/(1 + x^k)^(k-1).

%C Convolution of A000009 and A255528.

%C Convolution inverse of A052812.

%F G.f.: exp(Sum_{k>=1} (-1)^k*x^(2*k)/(k*(1 - x^k)^2)).

%p a:=series(mul(1/(1+x^k)^(k-1),k=1..100),x=0,51): seq(coeff(a,x,n),n=0..50); # _Paolo P. Lava_, Apr 02 2019

%t nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^(k - 1), {k, 1, nmax}], {x, 0, nmax}], x]

%t nmax = 50; CoefficientList[Series[Exp[Sum[(-1)^k x^(2 k)/(k (1 - x^k)^2), {k, 1, nmax}]], {x, 0, nmax}], x]

%t a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d) d (d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 50}]

%Y Cf. A000009, A052812, A255528, A305628.

%K sign

%O 0,4

%A _Ilya Gutkovskiy_, Sep 10 2018