login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318882
Total length of transient and terminal cycle if unitary-proper-divisor-sum function f(x) = A063919(x) is iterated and the initial value is n. Number of distinct terms in iteration list.
10
1, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 3, 2, 4, 3, 2, 2, 4, 2, 4, 3, 5, 2, 4, 2, 3, 2, 4, 2, 3, 2, 2, 4, 5, 3, 5, 2, 6, 3, 5, 2, 3, 2, 3, 4, 4, 2, 5, 2, 5, 4, 5, 2, 3, 3, 3, 3, 3, 2, 1, 2, 6, 3, 2, 3, 3, 2, 6, 3, 7, 2, 5, 2, 6, 3, 5, 3, 2, 2, 6, 2, 4, 2, 6, 3, 5, 5, 5, 2, 1, 4, 5, 4, 6, 3, 6, 2, 6, 4, 4, 2, 3, 2, 6, 6
OFFSET
1,2
COMMENTS
This sequence implements the original definition given for A097032.
LINKS
FORMULA
a(n) = A097031(n) + A318883(n).
a(n) = A097032(n) + A318880(n) - 1.
EXAMPLE
For n = 1, A063919(1) = 1, that is, we immediately end with a terminal cycle of length 1 without a preceding transient part, thus a(1) = 0+1 = 1.
For n = 2, A063919(2) = 1, and A063919(1) = 1, so we end with a terminal cycle of length 1, after a transient part of length 1, thus a(2) = 1+1 = 2.
For n = 30, A063919(30) = 42, A063919(42) = 54, A063919(54) = 30, thus a(30) = a(42) = a(54) = 0+3 = 3, as 30, 42 and 54 are all contained in their own terminal cycle of length 3, without a preceding transient part.
For n = 1506, the iteration-list is {1506, 1518, 1938, 2382, 2394, 2406, [2418, 2958, 3522, 3534, 4146, 4158, 3906, 3774, 4434, 4446, 3954, 3966, 3978, 3582, 2418, ..., ad infinitum]}. After a transient of length 6 the iteration ends in a cycle of length 14, thus a(1506) = 6+14 = 20.
MATHEMATICA
a063919[1] = 1; (* function a[] in A063919 by Jean-François Alcover *)
a063919[n_] := Total[Select[Divisors[n], GCD[#, n/#]==1&]]-n/; n>1
a318882[n_] := Map[Length[NestWhileList[a063919, #, UnsameQ, All]]-1&, Range[n]]
a318882[105] (* Hartmut F. W. Hoft, Jan 25 2024 *)
PROG
(PARI)
A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
A063919(n) = if(1==n, n, A034460(n));
A318882(n) = { my(visited = Map()); for(j=1, oo, if(mapisdefined(visited, n), return(j-1), mapput(visited, n, j)); n = A063919(n)); };
\\ Or by using lists:
pil(item, lista) = { for(i=1, #lista, if(lista[i]==item, return(i))); (0); };
A318882(n) = { my(visited = List([]), k); for(j=1, oo, if((k = pil(n, visited)) > 0, return(j-1)); listput(visited, n); n = A063919(n)); };
CROSSREFS
Cf. A002827 (the positions of ones after the initial 1).
Sequence in context: A229895 A063982 A374900 * A327160 A355832 A055020
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 22 2018, after Labos Elemer's A097032
STATUS
approved