login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318624
Number of 3-member subsets of [3*n] whose elements sum to a multiple of n.
2
0, 1, 10, 30, 55, 91, 138, 190, 253, 327, 406, 496, 597, 703, 820, 948, 1081, 1225, 1380, 1540, 1711, 1893, 2080, 2278, 2487, 2701, 2926, 3162, 3403, 3655, 3918, 4186, 4465, 4755, 5050, 5356, 5673, 5995, 6328, 6672, 7021, 7381, 7752, 8128, 8515, 8913, 9316
OFFSET
0,3
FORMULA
G.f.: -x*(3*x^4+4*x^3+11*x^2+8*x+1)/((x^2+x+1)*(x-1)^3).
a(n) = 2*a(n-1) -a(n-2) +a(n-3) -2*a(n-4) +a(n-5) for n>5.
3*a(n) = 5+2*A099837(n)+27*n*(n-1)/2 for n>0. - R. J. Mathar, Sep 02 2018
EXAMPLE
a(1) = 1: {1,2,3}.
a(2) = 10: {1,2,3}, {1,2,5}, {1,3,4}, {1,3,6}, {1,4,5}, {1,5,6}, {2,3,5}, {2,4,6}, {3,4,5}, {3,5,6}.
a(3) = 30: {1,2,3}, {1,2,6}, {1,2,9}, {1,3,5}, {1,3,8}, {1,4,7}, {1,5,6}, {1,5,9}, {1,6,8}, {1,8,9}, {2,3,4}, {2,3,7}, {2,4,6}, {2,4,9}, {2,5,8}, {2,6,7}, {2,7,9}, {3,4,5}, {3,4,8}, {3,5,7}, {3,6,9}, {3,7,8}, {4,5,6}, {4,5,9}, {4,6,8}, {4,8,9}, {5,6,7}, {5,7,9}, {6,7,8}, {7,8,9}.
MATHEMATICA
LinearRecurrence[{2, -1, 1, -2, 1}, {0, 1, 10, 30, 55, 91}, 50] (* Harvey P. Dale, Mar 27 2019 *)
CROSSREFS
Row n=3 of A318557.
Sequence in context: A096844 A031299 A124164 * A255601 A104044 A124080
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Aug 30 2018
STATUS
approved