login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 3-member subsets of [3*n] whose elements sum to a multiple of n.
2

%I #16 Mar 27 2019 12:18:38

%S 0,1,10,30,55,91,138,190,253,327,406,496,597,703,820,948,1081,1225,

%T 1380,1540,1711,1893,2080,2278,2487,2701,2926,3162,3403,3655,3918,

%U 4186,4465,4755,5050,5356,5673,5995,6328,6672,7021,7381,7752,8128,8515,8913,9316

%N Number of 3-member subsets of [3*n] whose elements sum to a multiple of n.

%H Alois P. Heinz, <a href="/A318624/b318624.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1).

%F G.f.: -x*(3*x^4+4*x^3+11*x^2+8*x+1)/((x^2+x+1)*(x-1)^3).

%F a(n) = 2*a(n-1) -a(n-2) +a(n-3) -2*a(n-4) +a(n-5) for n>5.

%F 3*a(n) = 5+2*A099837(n)+27*n*(n-1)/2 for n>0. - _R. J. Mathar_, Sep 02 2018

%e a(1) = 1: {1,2,3}.

%e a(2) = 10: {1,2,3}, {1,2,5}, {1,3,4}, {1,3,6}, {1,4,5}, {1,5,6}, {2,3,5}, {2,4,6}, {3,4,5}, {3,5,6}.

%e a(3) = 30: {1,2,3}, {1,2,6}, {1,2,9}, {1,3,5}, {1,3,8}, {1,4,7}, {1,5,6}, {1,5,9}, {1,6,8}, {1,8,9}, {2,3,4}, {2,3,7}, {2,4,6}, {2,4,9}, {2,5,8}, {2,6,7}, {2,7,9}, {3,4,5}, {3,4,8}, {3,5,7}, {3,6,9}, {3,7,8}, {4,5,6}, {4,5,9}, {4,6,8}, {4,8,9}, {5,6,7}, {5,7,9}, {6,7,8}, {7,8,9}.

%t LinearRecurrence[{2,-1,1,-2,1},{0,1,10,30,55,91},50] (* _Harvey P. Dale_, Mar 27 2019 *)

%Y Row n=3 of A318557.

%K nonn,easy

%O 0,3

%A _Alois P. Heinz_, Aug 30 2018