login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318430
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 1, 2, 3 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 5, 1, 2, 16, 16, 2, 3, 50, 36, 50, 3, 5, 160, 147, 147, 160, 5, 8, 511, 417, 889, 417, 511, 8, 13, 1634, 1353, 3999, 3999, 1353, 1634, 13, 21, 5226, 4095, 20016, 19645, 20016, 4095, 5226, 21, 34, 16716, 12853, 95349, 132039, 132039, 95349, 12853, 16716
OFFSET
1,5
COMMENTS
Table starts
..0.....1.....1.......2........3.........5...........8...........13
..1.....5....16......50......160.......511........1634.........5226
..1....16....36.....147......417......1353........4095........12853
..2....50...147.....889.....3999.....20016.......95349.......461349
..3...160...417....3999....19645....132039......774731......4831925
..5...511..1353...20016...132039...1216538.....9600648.....81327718
..8..1634..4095...95349...774731...9600648....99435165...1103814944
.13..5226.12853..461349..4831925..81327718..1103814944..16560787736
.21.16716.39489.2221254.29346956.665822482.11993654843.238281611555
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) +a(n-2) -3*a(n-4) -2*a(n-5) -a(n-6)
k=3: [order 17] for n>20
k=4: [order 53] for n>59
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..1..1..1. .0..1..1..0. .0..1..1..0. .0..1..1..1
..0..1..1..0. .0..0..0..1. .0..1..1..1. .1..1..0..1. .1..0..0..1
..0..1..1..0. .1..0..0..1. .0..0..0..0. .0..0..0..1. .0..0..0..1
..1..0..1..1. .1..0..0..0. .0..0..0..1. .1..0..0..0. .0..1..0..1
..1..1..1..0. .0..1..1..1. .1..0..1..0. .1..1..1..0. .0..0..0..0
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A317817.
Sequence in context: A258339 A197080 A317823 * A318098 A318068 A165449
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 26 2018
STATUS
approved