login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318098
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 1, 2, 3 or 5 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 5, 1, 2, 16, 16, 2, 3, 50, 45, 50, 3, 5, 160, 220, 220, 160, 5, 8, 511, 795, 1563, 795, 511, 8, 13, 1634, 3310, 9193, 9193, 3310, 1634, 13, 21, 5226, 12774, 57744, 73788, 57744, 12774, 5226, 21, 34, 16716, 51298, 356786, 679923, 679923, 356786, 51298
OFFSET
1,5
COMMENTS
Table starts
..0.....1......1........2.........3...........5............8.............13
..1.....5.....16.......50.......160.........511.........1634...........5226
..1....16.....45......220.......795........3310........12774..........51298
..2....50....220.....1563......9193.......57744.......356786........2215533
..3...160....795.....9193.....73788......679923......5965933.......53097417
..5...511...3310....57744....679923.....8985801....114914085.....1478603982
..8..1634..12774...356786...5965933...114914085...2154127036....40412593332
.13..5226..51298..2215533..53097417..1478603982..40412593332..1097965368750
.21.16716.201637.13752047.470312224.19018066407.760353849044.29957208854824
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) +a(n-2) -3*a(n-4) -2*a(n-5) -a(n-6)
k=3: [order 19] for n>21
k=4: [order 72] for n>73
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..0. .0..1..1..0. .0..0..0..0. .0..0..0..0. .0..0..1..0
..1..1..1..1. .1..1..0..0. .1..0..1..1. .1..1..1..1. .1..1..1..1
..0..1..1..1. .0..0..0..1. .1..0..0..0. .1..0..1..1. .0..1..0..1
..0..0..0..0. .0..0..1..1. .1..0..1..1. .1..0..0..0. .0..1..0..1
..1..0..0..1. .1..0..1..0. .1..0..0..0. .1..0..0..1. .1..1..1..0
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A317817.
Sequence in context: A197080 A317823 A318430 * A318068 A165449 A019114
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 16 2018
STATUS
approved