login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318068
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 1, 2, 3 or 4 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
8
0, 1, 1, 1, 5, 1, 2, 18, 18, 2, 3, 67, 98, 67, 3, 5, 249, 649, 649, 249, 5, 8, 925, 4003, 7170, 4003, 925, 8, 13, 3437, 25106, 76927, 76927, 25106, 3437, 13, 21, 12770, 156846, 829137, 1405892, 829137, 156846, 12770, 21, 34, 47447, 980960, 8929364, 25994502
OFFSET
1,5
COMMENTS
Table starts
..0.....1.......1..........2............3..............5................8
..1.....5......18.........67..........249............925.............3437
..1....18......98........649.........4003..........25106...........156846
..2....67.....649.......7170........76927.........829137..........8929364
..3...249....4003......76927......1405892.......25994502........479322719
..5...925...25106.....829137.....25994502......824452611......26085599617
..8..3437..156846....8929364....479322719....26085599617....1415459855958
.13.12770..980960...96178466...8844178475...825766558967...76853282341918
.21.47447.6133497.1035919809.163160290206.26137612655323.4172233315256556
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) +3*a(n-2) -a(n-3) -a(n-4)
k=3: [order 11] for n>12
k=4: [order 39]
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..0..1..1. .0..1..0..0. .0..1..1..1. .0..1..1..0
..1..1..1..0. .1..0..0..0. .1..0..0..1. .1..0..0..1. .0..0..0..1
..0..1..0..0. .1..1..0..1. .1..0..0..0. .0..0..1..1. .0..1..1..0
..0..0..0..1. .1..0..0..0. .0..0..1..0. .1..0..0..1. .0..1..0..1
..1..0..1..0. .0..1..1..1. .1..1..1..0. .1..0..1..0. .0..0..0..1
CROSSREFS
Column 1 is A000045(n-1).
Sequence in context: A317823 A318430 A318098 * A165449 A019114 A201526
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 15 2018
STATUS
approved