login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A318405
Rectangular array R read by antidiagonals: R(n,k) = F(n+1)^k - k*F(n-1)*F(n)^(k-1), where F(n) = A000045(n), the n-th Fibonacci number; n >= 0, k >= 1.
0
0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 5, 5, 3, 1, 1, 12, 15, 13, 5, 1, 1, 27, 49, 71, 34, 8, 1, 1, 58, 163, 409, 287, 89, 13, 1, 1, 121, 537, 2315, 2596, 1237, 233, 21, 1, 1, 248, 1739, 12709, 23393, 18321, 5205, 610, 34, 1, 1, 503, 5537, 67919, 205894, 268893, 124177, 22105, 1597, 55
OFFSET
0,9
COMMENTS
Row index n begins with 0, column index begins with 1.
R(n,k) is the number of Markov equivalence classes whose skeleton is a spider graph with k legs, each of which contains n nodes of degree at most two. See Corollary 4.2 in the paper by A. Radhakrishnan et al. below.
LINKS
A. Radhakrishnan, L. Solus, and C. Uhler. Counting Markov equivalence classes for DAG models on trees, arXiv:1706.06091 [math.CO], 2017; Discrete Applied Mathematics 244 (2018): 170-185.
EXAMPLE
The rectangular array R(n,k) begins:
n\k| 1 2 3 4 5 6 7
---+-------------------------------------------------------------
0 | 0 1 1 1 1 1 1
1 | 1 1 1 1 1 1 1
2 | 1 2 5 12 27 58 121
3 | 2 5 15 49 163 537 1739
4 | 3 13 71 409 2315 12709 67919
5 | 5 34 287 2596 23393 205894 1769027
6 | 8 89 1237 18321 268893 3843769 53573477
7 | 13 233 5205 124177 2941661 67944057 1530787237
PROG
(Sage)
def R(n, k):
return fibonacci(n+1)^k-k*fibonacci(n-1)*fibonacci(n)^(k-1)
CROSSREFS
Columns include A000045, A001519, A318376, A318404.
Cf. A007984.
Sequence in context: A178304 A123585 A145668 * A181645 A129104 A232648
KEYWORD
nonn,tabl,easy
AUTHOR
Liam Solus, Aug 26 2018
STATUS
approved