login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129104 Triangle T, read by rows, where row n (shifted left) of T equals row 0 of matrix power T^n for n>=0. 1
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 5, 6, 4, 1, 1, 16, 24, 20, 8, 1, 1, 69, 136, 136, 72, 16, 1, 1, 430, 1162, 1360, 880, 272, 32, 1, 1, 4137, 15702, 21204, 16032, 6240, 1056, 64, 1, 1, 64436, 346768, 537748, 461992, 214336, 46784, 4160, 128, 1, 1, 1676353, 12836904 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

This irregular-shaped triangle T results from inserting a left column of all 1's into triangle A129100; curiously, column k of A129100 equals column 0 of matrix power A129100^(2^k), while row n of A129100 equals row 0 of matrix power T^n (T is this triangle).

LINKS

Table of n, a(n) for n=0..56.

FORMULA

Column 1: T(n,1) = A129092(n) = A030067(2^n - 1) for n>=1, where A030067 is the semi-Fibonacci numbers.

EXAMPLE

Triangle T begins:

1, 1;

1, 1, 1;

1, 2, 2, 1;

1, 5, 6, 4, 1;

1, 16, 24, 20, 8, 1;

1, 69, 136, 136, 72, 16, 1; ...

where row 0 of matrix power T^k forms row k of T shift left,

as illustrated below.

For row 2: the matrix square T^2 begins:

2, 2, 1;

3, 4, 3, 1;

6, 12, 12, 6, 1;

17, 54, 65, 42, 12, 1;

70, 362, 512, 400, 156, 24, 1;

431, 3708, 6223, 5656, 2744, 600, 48, 1; ...

and row 0 of T^2 equals row 2 of T shift left: [2, 2, 1].

For row 3: the matrix cube T^3 begins:

5, 6, 4, 1;

11, 18, 16, 7, 1;

37, 88, 96, 56, 14, 1;

191, 672, 860, 609, 210, 28, 1;

1525, 8038, 11956, 9856, 4256, 812, 56, 1; ...

and row 0 of T^3 equals row 3 of T shift left: [5, 6, 4, 1].

For row 4: T^4 begins:

16, 24, 20, 8, 1;

53, 112, 116, 64, 15, 1;

292, 890, 1088, 736, 240, 30, 1;

2571, 11350, 16056, 12664, 5185, 930, 60, 1; ...

and row 0 of T^4 equals row 4 of T shift left: [16, 24, 20, 8, 1].

PROG

(PARI) T(n, k)=local(A=[1, 1; 1, 1], B); for(m=1, n+1, B=matrix(m+1, m+1); for(r=1, m, for(c=1, r+1, if(r==c-1 || c==1, B[r, c]=1, B[r, c]=(A^(r-1))[1, c-1]))); A=B); return(A[n+1, k+1])

CROSSREFS

Cf. A030067 (Semi-Fibonacci); A129092 (column 1), A129101 (column 2), A129102 (column 3), A129103 (column 4); variant: A129100.

Sequence in context: A145668 A318405 A181645 * A232648 A295690 A219727

Adjacent sequences:  A129101 A129102 A129103 * A129105 A129106 A129107

KEYWORD

nonn,tabf

AUTHOR

Paul D. Hanna, Apr 14 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 08:10 EDT 2021. Contains 344981 sequences. (Running on oeis4.)