The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A318408 Triangle read by rows: T(n,k) is the number of permutations of [n+1] with index in the lexicographic ordering of permutations being congruent to 1 or 5 modulo 6 that have exactly k descents; k > 0. 0
 0, 0, 1, 1, 1, 1, 6, 1, 1, 19, 19, 1, 1, 48, 142, 48, 1, 1, 109, 730, 730, 109, 1, 1, 234, 3087, 6796, 3087, 234, 1, 1, 487, 11637, 48355, 48355, 11637, 487, 1, 1, 996, 40804, 291484, 543030, 291484, 40804, 996, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS Note that we assume the permutations are lexicographically ordered in a zero-indexed list from smallest to largest. Recall that a descent in a permutation p of [n+1] is an index i in [n] such that p(i) > p(i+1). The n-th row of the triangle T(n,k) is the coefficient vector of the local h^*-polynomial (i.e., the box polynomial) of the factoradic n-simplex. Each row is known to be symmetric and unimodal. Moreover the local h^*-polynomial of the factoradic n-simplex has only real roots. See the paper by L. Solus below for definitions and proofs of these statements. The n-th row of T(n,k) is the coefficient sequence of a restriction of the n-th Eulerian polynomial, which is given by the n-th row of A008292. LINKS L. Solus. Local h^*-polynomials of some weighted projective spaces, arXiv:1807.08223 [math.CO], 2018. To appear in the Proceedings of the 2018 Summer Workshop on Lattice Polytopes at Osaka University (2018). EXAMPLE The triangle T(n,k) begins:   n\k|  1     2     3       4       5       6     7     8    9   ---+---------------------------------------------------------   0  |  0   1  |  0   2  |  1   3  |  1     1   4  |  1     6     1   5  |  1    19    19       1   6  |  1    48   142      48       1   7  |  1   109   730     730     109       1   8  |  1   234  3087    6796    3087     234     1   9  |  1   487 11637   48355   48355   11637   487     1   10 |  1   996 40804  291484  543030  291484 40804   996    1 PROG (Macaulay2) R = QQ[z]; factoradicBox = n -> ( L := toList(1..(n!-1)); B := {}; for j in L do if (j%6!=0 and j%6!=2 and j%6!=3 and j%6!=4) then B = append(B, j); W := B / (i->z^(i-sum(1..(n-1), j->floor(i/((n-j)!+(n-1-j)!))))); return sum(W); ); CROSSREFS Cf. A008292. Sequence in context: A176125 A168289 A141690 * A146957 A146988 A203954 Adjacent sequences:  A318405 A318406 A318407 * A318409 A318410 A318411 KEYWORD nonn,tabf,more AUTHOR Liam Solus, Aug 26 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 17:06 EDT 2021. Contains 345417 sequences. (Running on oeis4.)