login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318408 Triangle read by rows: T(n,k) is the number of permutations of [n+1] with index in the lexicographic ordering of permutations being congruent to 1 or 5 modulo 6 that have exactly k descents; k > 0. 0
0, 0, 1, 1, 1, 1, 6, 1, 1, 19, 19, 1, 1, 48, 142, 48, 1, 1, 109, 730, 730, 109, 1, 1, 234, 3087, 6796, 3087, 234, 1, 1, 487, 11637, 48355, 48355, 11637, 487, 1, 1, 996, 40804, 291484, 543030, 291484, 40804, 996, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

Note that we assume the permutations are lexicographically ordered in a zero-indexed list from smallest to largest.

Recall that a descent in a permutation p of [n+1] is an index i in [n] such that p(i) > p(i+1).

The n-th row of the triangle T(n,k) is the coefficient vector of the local h^*-polynomial (i.e., the box polynomial) of the factoradic n-simplex. Each row is known to be symmetric and unimodal. Moreover the local h^*-polynomial of the factoradic n-simplex has only real roots. See the paper by L. Solus below for definitions and proofs of these statements.

The n-th row of T(n,k) is the coefficient sequence of a restriction of the n-th Eulerian polynomial, which is given by the n-th row of A008292.

LINKS

Table of n, a(n) for n=0..46.

L. Solus. Local h^*-polynomials of some weighted projective spaces, arXiv:1807.08223 [math.CO], 2018. To appear in the Proceedings of the 2018 Summer Workshop on Lattice Polytopes at Osaka University (2018).

EXAMPLE

The triangle T(n,k) begins:

  n\k|  1     2     3       4       5       6     7     8    9

  ---+---------------------------------------------------------

  0  |  0

  1  |  0

  2  |  1

  3  |  1     1

  4  |  1     6     1

  5  |  1    19    19       1

  6  |  1    48   142      48       1

  7  |  1   109   730     730     109       1

  8  |  1   234  3087    6796    3087     234     1

  9  |  1   487 11637   48355   48355   11637   487     1

  10 |  1   996 40804  291484  543030  291484 40804   996    1

PROG

(Macaulay2)

R = QQ[z];

factoradicBox = n -> (

L := toList(1..(n!-1));

B := {};

for j in L do

if (j%6!=0 and j%6!=2 and j%6!=3 and j%6!=4) then B = append(B, j);

W := B / (i->z^(i-sum(1..(n-1), j->floor(i/((n-j)!+(n-1-j)!)))));

return sum(W);

);

CROSSREFS

Cf. A008292.

Sequence in context: A176125 A168289 A141690 * A146957 A146988 A203954

Adjacent sequences:  A318405 A318406 A318407 * A318409 A318410 A318411

KEYWORD

nonn,tabf,more

AUTHOR

Liam Solus, Aug 26 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 18:52 EDT 2019. Contains 324215 sequences. (Running on oeis4.)