login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317793
a(n) = (4^n + (-3)^n + 2^n + (-1)^n)/2.
0
1, 15, 22, 177, 406, 2445, 7162, 36177, 121486, 554325, 2009602, 8656377, 32761366, 136617405, 529712842, 2169039777, 8525430046, 34553579685, 136858084882, 551499730377, 2193794127526, 8811785649165, 35137304693722, 140878711512177, 562526325893806
OFFSET
1,2
COMMENTS
This sequence is an extension of A014551; the sequences A014551(n) = 2^n + (-1)^n, a(n) = 4^n + (-3)^n + 2^n + (-1)^n and b(n) = 6^n + (-5)^n + 4^n + (-3)^n + 2^n + (-1)^n, ... can be considered to be of the same type.
For k>0, a(4k-2)/5, a(2k)/3 and a(2k+1)/2 are integers.
FORMULA
a(n) = (4^n + (-3)^n + 2^n + (-1)^n)/2 for n > 0.
From Colin Barker, Aug 07 2018: (Start)
G.f.: x*(1 + 13*x - 21*x^2 - 48*x^3) / ((1 + x)*(1 - 2*x)*(1 + 3*x)*(1 - 4*x)).
a(n) = 2*a(n-1) + 13*a(n-2) - 14*a(n-3) - 24*a(n-4) for n>4.
(End)
E.g.f.: (cosh(3*x/2) + cosh(7*x/2))*(cosh(x/2) + sinh(x/2)) - 2. - Stefano Spezia, Mar 20 2022
MATHEMATICA
CoefficientList[ Series[(-48x^3 - 21x^2 + 13x + 1)/(24x^4 + 14x^3 - 13x^2 - 2x + 1), {x, 0, 25}], x] (* or *)LinearRecurrence[{2, 13, -14, -24}, {1, 15, 22, 177}, 26] (* Robert G. Wilson v, Aug 07 2018 *)
PROG
(PARI) Vec(x*(1 + 13*x - 21*x^2 - 48*x^3) / ((1 + x)*(1 - 2*x)*(1 + 3*x)*(1 - 4*x)) + O(x^40)) \\ Colin Barker, Aug 07 2018
(Magma) [(4^n+(-3)^n+2^n+(-1)^n)/2: n in [1..30]]; // Vincenzo Librandi, Aug 08 2018
CROSSREFS
Sequence in context: A065728 A344134 A241253 * A219683 A166665 A317295
KEYWORD
nonn,easy
AUTHOR
Jinyuan Wang, Aug 07 2018
EXTENSIONS
More terms from Colin Barker, Aug 07 2018
STATUS
approved