login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317639
Number of equivalence classes of Dyck paths of semilength n for the consecutive pattern UDUDD, where U=(1,1) and D=(1,-1).
2
1, 1, 1, 2, 4, 6, 10, 19, 32, 54, 98, 170, 292, 520, 909, 1577, 2787, 4883, 8515, 14998, 26299, 45984, 80863, 141844, 248381, 436406, 765649, 1341844, 2356500, 4134749, 7249981, 12728630, 22335110, 39174776, 68766785, 120670190, 211689586, 371558266, 652014636
OFFSET
0,4
COMMENTS
Two Dyck paths of the same length are equivalent with respect to a given pattern if they have equal sets of occurrences of this pattern.
LINKS
J.-L. Baril, A. Petrossian, Equivalence Classes of Motzkin Paths Modulo a Pattern of Length at Most Two, J. Int. Seq. 18 (2015) 15.7.1
K. Manes, A. Sapounakis, I. Tasoulas, P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv:1510.01952 [math.CO], 2015.
MAPLE
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
`if`(y=0, b(x-2, y)+b(x-6, y+2), b(x-1, y-1))+b(x-5, y+1)))
end:
a:= n-> b(2*n, 0):
seq(a(n), n=0..42);
MATHEMATICA
b[x_, y_] := b[x, y] = If[y < 0 || y > x, 0, If[x == 0, 1, If[y == 0, b[x - 2, y] + b[x - 6, y + 2], b[x - 1, y - 1]] + b[x - 5, y + 1]]];
a[n_] := b[2n, 0];
Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Aug 20 2018, from Maple *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 02 2018
STATUS
approved