login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274289
Number of equivalence classes of Dyck paths of semilength n for the string udu.
1
1, 1, 2, 4, 9, 22, 54, 134, 335, 843, 2132, 5409, 13761, 35088, 89638, 229361, 587678, 1507586, 3871589, 9952087, 25604573, 65927447, 169875992, 438016016, 1130103976, 2917412699, 7535482753, 19473430909, 50347508572, 130228143004, 336985674038
OFFSET
0,3
LINKS
K. Manes, A. Sapounakis, I. Tasoulas, P. Tsikouras, Equivalence classes of ballot paths modulo strings of length 2 and 3, arXiv:1510.01952 [math.CO], 2015.
MAPLE
G := 1 ;
T := 1 ;
for t from 1 to 40 do
G := x*(1+G)+x^2*(1+x*G)*(1+x*(1+x*G))*G ;
G := taylor(G, x=0, t+1) ;
G := convert(G, polynom) ;
T := (-x^2-x^3*T^3-x^2*T^2)/(x-1) ;
T := taylor(T, x=0, t+1) ;
T := convert(T, polynom) ;
F := (x*(1-x)^2*(1+G+x*G)+x^5*(1+x*G)*G^2)/(1-x)/((1-x)^2+(x-2)*x^2*G)
-x^4*(1-x+x^3)*(1+x*G)*G*T/(1-x)^2/(1-x+x^3-x*T) ;
F := taylor(F, x=0, t+1) ;
F := convert(F, polynom) ;
for i from 0 to t do
printf("%d, ", coeff(F, x, i)) ;
od;
print();
end do: # R. J. Mathar, Jun 21 2016
MATHEMATICA
G = 1; T = 1;
For[ t = 1 , t <= 40, t++,
G = x*(1 + G) + x^2*(1 + x*G)*(1 + x*(1 + x*G))*G + O[x]^(t+1) // Normal;
T = (-x^2 - x^3*T^3 - x^2*T^2)/(x - 1) + O[x]^(t+1) // Normal;
F = 1 + (x*(1 - x)^2*(1 + G + x*G) + x^5*(1 + x*G)*G^2)/(1 - x)/((1 - x)^2 + (x - 2)*x^2*G) - x^4*(1 - x + x^3)*(1 + x*G)*G*T/(1 - x)^2/(1 - x + x^3 - x*T) + O[x]^(t+1) // Normal;
];
CoefficientList[F, x] (* Jean-François Alcover, Jul 27 2018, after R. J. Mathar *)
CROSSREFS
Sequence in context: A238826 A048211 A098719 * A265023 A343291 A290996
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 17 2016
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jul 27 2018
STATUS
approved