OFFSET
1,1
COMMENTS
An integer partition is totally nonincreasing if either it is empty or a singleton or its multiplicities (where if x < y the multiplicity of x is counted prior to the multiplicity of y) are weakly decreasing and are themselves a totally nonincreasing integer partition.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
EXAMPLE
Sequence of all integer partitions that are not totally nonincreasing begins: (221), (331), (2221), (332), (3221), (441), (22211), (4221), (442), (3321), (22221), (32211), (5221), (6221), (551), (443), (3331), (42211), (32221), (4421), (33211), (7221), (222211), (661), (8221), (4331), (552), (3332), (42221), (52211), (9221), (33221).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
totincQ[q_]:=Or[Length[q]<=1, And[OrderedQ[Length/@Split[q]], totincQ[Reverse[Length/@Split[q]]]]];
Select[Range[1000], !totincQ[Reverse[primeMS[#]]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 25 2018
STATUS
approved