login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222740
Denominators of 1/16 - 1/(4 + 8*n)^2.
0
1, 18, 50, 49, 81, 242, 338, 225, 289, 722, 882, 529, 625, 1458, 1682, 961, 1089, 2450, 2738, 1521, 1681, 3698, 4050, 2209, 2401, 5202, 5618, 3025, 3249, 6962, 7442, 3969, 4225, 8978, 9522, 5041, 5329, 11250, 11858, 6241
OFFSET
0,2
COMMENTS
Denominators of the reduced fractions A064038(n)/a(n) = 0/1, 1/18, 3/50, 3/49, 5/81, 15/242, 21/338, 14/225, 18/289, ... .
Also, A064038 and a(n) are related to the sequence of period 4: repeat 1, 2, 2, 1.
FORMULA
a(n) = A014695(n) * A016754(n).
a(n) = 16*A064038(n+1) + A014695(n).
a(n) = A061042(4+8*n).
a(2n+2) - a(2n+1) = 32*A026741(n+1).
G.f.: ( -1 - 15*x - 2*x^2 + 3*x^3 - 66*x^4 + 3*x^5 - 2*x^6 - 15*x^7 - x^8 ) / ( (x-1)^3*(x^2+1)^3 ). - R. J. Mathar, Jun 04 2013
a(n) = (3-sqrt(2)*cos((2*n+1)*Pi/4))*(2*n+1)^2/2. - Wesley Ivan Hurt, Oct 04 2018
EXAMPLE
a(0) = 1*1, a(1) = 2*9 = 18, a(2) = 2*25 = 50, a(3) = 1*49 = 49.
a(0) = 16*0 + 1 = 1, a(1) = 16*1 + 2 = 18, a(2) = 16*3 + 2 = 50, a(3) = 16*3 + 1 = 49.
MATHEMATICA
Table[1/16-1/(4+8n)^2, {n, 0, 40}]//Denominator (* or *) LinearRecurrence[ {3, -6, 10, -12, 12, -10, 6, -3, 1}, {1, 18, 50, 49, 81, 242, 338, 225, 289}, 40] (* Harvey P. Dale, Aug 30 2021 *)
CROSSREFS
Sequence in context: A234956 A135189 A178398 * A335377 A317258 A071365
KEYWORD
nonn,frac,easy
AUTHOR
Paul Curtz, May 29 2013
STATUS
approved