OFFSET
0,2
COMMENTS
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,-6,10,-12,12,-10,6,-3,1).
FORMULA
a(n) = A061042(4+8*n).
a(2n+2) - a(2n+1) = 32*A026741(n+1).
G.f.: ( -1 - 15*x - 2*x^2 + 3*x^3 - 66*x^4 + 3*x^5 - 2*x^6 - 15*x^7 - x^8 ) / ( (x-1)^3*(x^2+1)^3 ). - R. J. Mathar, Jun 04 2013
a(n) = (3-sqrt(2)*cos((2*n+1)*Pi/4))*(2*n+1)^2/2. - Wesley Ivan Hurt, Oct 04 2018
EXAMPLE
a(0) = 1*1, a(1) = 2*9 = 18, a(2) = 2*25 = 50, a(3) = 1*49 = 49.
a(0) = 16*0 + 1 = 1, a(1) = 16*1 + 2 = 18, a(2) = 16*3 + 2 = 50, a(3) = 16*3 + 1 = 49.
MATHEMATICA
Table[1/16-1/(4+8n)^2, {n, 0, 40}]//Denominator (* or *) LinearRecurrence[ {3, -6, 10, -12, 12, -10, 6, -3, 1}, {1, 18, 50, 49, 81, 242, 338, 225, 289}, 40] (* Harvey P. Dale, Aug 30 2021 *)
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Paul Curtz, May 29 2013
STATUS
approved