The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A071365 Numbers n such that A071364(n) <> A046523(n). 12
 18, 50, 54, 75, 90, 98, 108, 126, 147, 150, 162, 198, 234, 242, 245, 250, 270, 294, 300, 306, 324, 338, 342, 350, 363, 375, 378, 414, 450, 486, 490, 500, 507, 522, 525, 540, 550, 558, 578, 588, 594, 600, 605, 630, 648, 650, 666, 686, 702, 722, 726, 735, 738 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A071364(k), A046523(k) have the same prime factors, but not the same sequence of exponents in their prime factorizations. A046523(n) <> n, as A046523(n) <= A071366(n) <= n. Numbers with more than one prime factor and, in the ordered factorization, at least one exponent is greater than the previous exponent when read from left to right; contains A097319. - Ray Chandler, Sep 23 2005 Choie et al. call the complementary set of integers (n = p1^e1 * p2^e^2 * ... with exponents e1 >= e2 >= e3 >= ... in their ordered prime factorization) Hardy-Ramanujan integers. - R. J. Mathar, Dec 08 2011 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..10000 Y. Choie, N. Lichiardopol, P. Moree, P. Sole, On Robin's criterion for the Riemann hypothesis, J. Theor. Nombr. Bord. 19 (2) (2007), 357-372 EXAMPLE n=50=2*5*5: A071364(50)=2*3*3=18, A046523(50)=2*2*3=12; n=500=2*2*5*5*5: A071364(500)=2*2*3*3*3=108, A046523(500)=2*2*2*3*3=72. MAPLE a:= proc(n) option remember; local i, k, l;       for k from 1 +`if`(n=1, 0, a(n-1))       do l:= sort(ifactors(k)[2], (x, y)->x[1]

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 14:39 EDT 2022. Contains 356009 sequences. (Running on oeis4.)