login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317170
Expansion of e.g.f. exp(exp(x) - 1)*BesselI(1,2*(exp(x) - 1))/(exp(x) - 1).
1
1, 1, 3, 11, 48, 242, 1374, 8619, 58923, 434595, 3431263, 28817120, 256100717, 2397920319, 23567078396, 242343368931, 2600148486462, 29036252825090, 336754427112094, 4048299252733563, 50357053778129599, 647129716643654763, 8579133975080008700, 117178742009906802080, 1646975673395621229201
OFFSET
0,3
COMMENTS
Stirling transform of the Motzkin numbers (A001006).
LINKS
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Stirling Transform
FORMULA
a(n) = Sum_{k=0..n} Stirling2(n,k)*A001006(k).
MAPLE
a:=series(exp(exp(x) - 1)*BesselI(1, 2*(exp(x) - 1))/(exp(x) - 1), x=0, 26): seq(n!*coeff(a, x, n), n=0..24); # Paolo P. Lava, Mar 26 2019
MATHEMATICA
nmax = 24; CoefficientList[Series[Exp[Exp[x] - 1] BesselI[1, 2 (Exp[x] - 1)]/(Exp[x] - 1), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] Hypergeometric2F1[(1 - k)/2, -k/2, 2, 4], {k, 0, n}], {n, 0, 24}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 23 2018
STATUS
approved