login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316698
a(n) is the number of rooted 2-connected triangular maps on the projective plane with n vertices.
1
0, 0, 1, 18, 261, 3539, 46695, 608526, 7884661, 101905839, 1316047599, 16998339587, 219699143367, 2842235616645, 36809980380883, 477280717428102, 6195737611180053, 80522713890559319, 1047702563499718623, 13646946767000964471, 177947654115176898479
OFFSET
1,4
LINKS
Zhi-Cheng Gao, The number of rooted 2-connected triangular maps on the projective plane, Journal of Combinatorial Theory, Series B, Volume 53, Issue 1, September 1991, Pages 130-142.
FORMULA
G.f. A(x) = (1 - sqrt((1-6*r)/(1-2*r)))/(2*r) - 1/(1-3*r), where r(x) satisfies x = r*(1-2*r)^2, with r(0)=0. (see (1.1) in Gao link)
G.f. y=A(x) satisfies: 0 = (729*x^2 - 54*x + 1)*y^6 + (-567*x^2 + 48*x - 1)*y^5 + (4617*x^3 - 486*x^2 + 12*x)*y^4 + (-14310*x^4 + 1772*x^3 - 54*x^2)*y^3 + (-672*x^4 + 50*x^3)*y^2 + (126*x^5 - 36*x^4 + 2*x^3)*y - 2*x^6.
Recurrence: (n-1)*n*(2*n - 3)*(4*n - 9)*(4*n - 3)*(972*n^7 - 1944*n^6 - 169443*n^5 + 1865607*n^4 - 8817457*n^3 + 21764795*n^2 - 27508222*n + 14065464)*a(n) = 3*(n-1)*(699840*n^11 - 5598720*n^10 - 107581284*n^9 + 2120974416*n^8 - 16716827583*n^7 + 77044659801*n^6 - 229110154570*n^5 + 453176543549*n^4 - 592757452327*n^3 + 491840891214*n^2 - 233773288056*n + 48250762560)*a(n-1) - 9*(5668704*n^12 - 61410960*n^11 - 770480100*n^10 + 20379495348*n^9 - 192680893665*n^8 + 1066797111051*n^7 - 3886131103119*n^6 + 9712411159089*n^5 - 16796662782944*n^4 + 19765806847064*n^3 - 15086450010036*n^2 + 6716653116768*n - 1318624045200)*a(n-2) + 486*(3*n - 11)*(3*n - 10)*(122472*n^10 - 717336*n^9 - 21548106*n^8 + 353617272*n^7 - 2470176720*n^6 + 10020300957*n^5 - 25599297354*n^4 + 41773597853*n^3 - 42167708852*n^2 + 23887121874*n - 5766718860)*a(n-3) - 26244*(n-4)*(3*n - 14)*(3*n - 13)*(3*n - 11)*(3*n - 10)*(972*n^7 + 4860*n^6 - 160695*n^5 + 1023252*n^4 - 3054319*n^3 + 4802888*n^2 - 3820650*n + 1199772)*a(n-4). - Vaclav Kotesovec, Jul 11 2018
a(n) ~ (27/2)^n * (1/(2*3^(7/4)*Gamma(3/4)) - 10/(27*sqrt(3*Pi)*n^(1/4)) + sqrt(2)*Gamma(3/4) / (3^(9/4)*Pi*sqrt(n))) / n^(5/4) [main asymptotic term by Gao, 1991]. - Vaclav Kotesovec, Jul 11 2018
PROG
(PARI)
seq(N) = {
my(x = 'x + O('x^(N+1)), r=serreverse(x*(1-2*x)^2),
v = Vec(subst((1-sqrt((1-6*x)/(1-2*x)))/(2*x)-1/(1-3*x), 'x, r)));
concat([0, 0], v);
};
seq(21)
CROSSREFS
Sequence in context: A255380 A255381 A078205 * A254248 A080583 A273589
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jul 10 2018
STATUS
approved