login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of rooted 2-connected triangular maps on the projective plane with n vertices.
1

%I #16 Jul 11 2018 09:44:02

%S 0,0,1,18,261,3539,46695,608526,7884661,101905839,1316047599,

%T 16998339587,219699143367,2842235616645,36809980380883,

%U 477280717428102,6195737611180053,80522713890559319,1047702563499718623,13646946767000964471,177947654115176898479

%N a(n) is the number of rooted 2-connected triangular maps on the projective plane with n vertices.

%H Gheorghe Coserea, <a href="/A316698/b316698.txt">Table of n, a(n) for n = 1..303</a>

%H Zhi-Cheng Gao, <a href="https://doi.org/10.1016/0095-8956(91)90058-R">The number of rooted 2-connected triangular maps on the projective plane</a>, Journal of Combinatorial Theory, Series B, Volume 53, Issue 1, September 1991, Pages 130-142.

%F G.f. A(x) = (1 - sqrt((1-6*r)/(1-2*r)))/(2*r) - 1/(1-3*r), where r(x) satisfies x = r*(1-2*r)^2, with r(0)=0. (see (1.1) in Gao link)

%F G.f. y=A(x) satisfies: 0 = (729*x^2 - 54*x + 1)*y^6 + (-567*x^2 + 48*x - 1)*y^5 + (4617*x^3 - 486*x^2 + 12*x)*y^4 + (-14310*x^4 + 1772*x^3 - 54*x^2)*y^3 + (-672*x^4 + 50*x^3)*y^2 + (126*x^5 - 36*x^4 + 2*x^3)*y - 2*x^6.

%F Recurrence: (n-1)*n*(2*n - 3)*(4*n - 9)*(4*n - 3)*(972*n^7 - 1944*n^6 - 169443*n^5 + 1865607*n^4 - 8817457*n^3 + 21764795*n^2 - 27508222*n + 14065464)*a(n) = 3*(n-1)*(699840*n^11 - 5598720*n^10 - 107581284*n^9 + 2120974416*n^8 - 16716827583*n^7 + 77044659801*n^6 - 229110154570*n^5 + 453176543549*n^4 - 592757452327*n^3 + 491840891214*n^2 - 233773288056*n + 48250762560)*a(n-1) - 9*(5668704*n^12 - 61410960*n^11 - 770480100*n^10 + 20379495348*n^9 - 192680893665*n^8 + 1066797111051*n^7 - 3886131103119*n^6 + 9712411159089*n^5 - 16796662782944*n^4 + 19765806847064*n^3 - 15086450010036*n^2 + 6716653116768*n - 1318624045200)*a(n-2) + 486*(3*n - 11)*(3*n - 10)*(122472*n^10 - 717336*n^9 - 21548106*n^8 + 353617272*n^7 - 2470176720*n^6 + 10020300957*n^5 - 25599297354*n^4 + 41773597853*n^3 - 42167708852*n^2 + 23887121874*n - 5766718860)*a(n-3) - 26244*(n-4)*(3*n - 14)*(3*n - 13)*(3*n - 11)*(3*n - 10)*(972*n^7 + 4860*n^6 - 160695*n^5 + 1023252*n^4 - 3054319*n^3 + 4802888*n^2 - 3820650*n + 1199772)*a(n-4). - _Vaclav Kotesovec_, Jul 11 2018

%F a(n) ~ (27/2)^n * (1/(2*3^(7/4)*Gamma(3/4)) - 10/(27*sqrt(3*Pi)*n^(1/4)) + sqrt(2)*Gamma(3/4) / (3^(9/4)*Pi*sqrt(n))) / n^(5/4) [main asymptotic term by Gao, 1991]. - _Vaclav Kotesovec_, Jul 11 2018

%o (PARI)

%o seq(N) = {

%o my(x = 'x + O('x^(N+1)), r=serreverse(x*(1-2*x)^2),

%o v = Vec(subst((1-sqrt((1-6*x)/(1-2*x)))/(2*x)-1/(1-3*x), 'x, r)));

%o concat([0,0], v);

%o };

%o seq(21)

%Y Cf. A007137, A316598.

%K nonn

%O 1,4

%A _Gheorghe Coserea_, Jul 10 2018