login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316321
Number of "nonlinear" trees on n nodes.
5
0, 0, 0, 0, 1, 4, 16, 51, 158, 463, 1330, 3742, 10438, 28877, 79619, 218997, 602079, 1655623, 4557604, 12564084, 34697544, 96006605, 266185703, 739530680, 2058786037, 5742859294, 16050179897, 44939957405, 126052336580, 354158412141
OFFSET
1,6
LINKS
J. H. Verner, High-order explicit Runge-Kutta pairs with low stage order, Applied Numerical Mathematics, 22 (1996), 345-347. See Table 2.
FORMULA
a(n) = 0 for n <= 4. Thereafter, a(n) = A000081(n) - (n-1) - A000295(n-2) = A000081(n) - 2^(n-2). For example, a(9) = 286 - 8 - 120 = 286 - 2^7 = 158.
CROSSREFS
Sequence in context: A121184 A203840 A089093 * A058234 A188125 A007688
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 02 2018, following a suggestion from Chris Kennedy, Jun 24 2018
STATUS
approved