The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A089093 Convoluted convolved Fibonacci numbers G_j^(6). 0
 0, 1, 4, 16, 51, 154, 418, 1098, 2726, 6570, 15308, 34839, 77412, 168882, 361896, 764097, 1590938, 3272640, 6656426, 13403600, 26739028, 52892435, 103806344, 202263470, 391460137, 752923563, 1439737364, 2738144031, 5181025837 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The 6th Witt transform of A000045 [Moree]. The 2nd to 5th Witt transforms are (essentially, adding leading zeros) in A089089, A089116, A089117, A089092. [From R. J. Mathar, Nov 08 2008] LINKS P. Moree, Convoluted convolved Fibonacci numbers Pieter Moree, The formal series Witt transform, Discr. Math. no. 295 vol. 1-3 (2005) 143-160. FORMULA G.f.: (z/6)[1/(1-z-z^2)^6-1/(1-z^2-z^4)^3-1/(1-z^3-z^6)^2+1/(1-z^6-z^12)]. MAPLE with(numtheory): f := z->1/(1-z-z^2): m := proc(r, j) d := divisors(r): W := (1/r)*z*sum(mobius(d[i])*f(z^d[i])^(r/d[i]), i=1..nops(d)): Wser := simplify(series(W, z=0, 80)): coeff(Wser, z^j) end: seq(m(6, j), j=1..40); MATHEMATICA f[k_] = 1/(1 - z^k - z^(2k))^(6/k); (1/6) (f[1] - f[2] - f[3] + f[6]) + O[z]^30 // CoefficientList[#, z]& (* Jean-François Alcover, Mar 24 2018 *) CROSSREFS Sequence in context: A323932 A121184 A203840 * A316321 A058234 A188125 Adjacent sequences:  A089090 A089091 A089092 * A089094 A089095 A089096 KEYWORD nonn AUTHOR N. J. A. Sloane, Dec 05 2003 EXTENSIONS Edited by Emeric Deutsch, Mar 06 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 16:10 EDT 2021. Contains 346447 sequences. (Running on oeis4.)