login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309972
Product of multinomial coefficients M(n;lambda), where lambda ranges over all partitions of n.
3
1, 1, 2, 18, 6912, 216000000, 1632586752000000000, 498266101635303733401600000000000, 1140494258799407218656986754465090350453096448000000000000000
OFFSET
0,3
FORMULA
a(n) = Product_{k=1..A000041(n)} A036038(n,k).
a(n) = A309951(n,A000041(n)).
EXAMPLE
a(3) = M(3;3) * M(3;2,1) * M(3;1,1,1) = 1 * 3 * 6 = 18.
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, [n!], [map(t->
binomial(n, i)*t, b(n-i, min(n-i, i)))[], b(n, i-1)[]])
end:
a:= n-> mul(i, i=b(n$2)):
seq(a(n), n=0..9); # Alois P. Heinz, Aug 25 2019
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {n!}, Join[Binomial[n, i] #& /@ b[n - i, Min[n - i, i]], b[n, i - 1]]];
a[n_] := Times @@ b[n, n];
a /@ Range[0, 9] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
CROSSREFS
Rightmost terms in rows of A309951.
Sequence in context: A006262 A003043 A059783 * A208056 A276092 A191554
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 25 2019
STATUS
approved