OFFSET
1,1
COMMENTS
x^(2^n) - a(n) is the minimal polynomial over Q for the algebraic number sqrt(p(n)*sqrt(p(n-1)*...*sqrt(p(2)*sqrt(p(1)))...)), where p(k) is the k-th prime. Each such monic polynomial is irreducible by Eisenstein's Criterion (using p = 2).
FORMULA
For n > 1, a(n) = a(n-1) * prime(n)^(2^(n-1)); a(1) = prime(1).
EXAMPLE
a(1) = 2^1 = 2 and x^2 - 2 is the minimal polynomial for the algebraic number sqrt(2).
a(4) = 2^1*3^2*5^4*7^8 = 64854011250 and x^16 - 64854011250 is the minimal polynomial for the algebraic number sqrt(7*sqrt(5*sqrt(3*sqrt(2)))).
PROG
(PARI) a(n) = prod(k=1, n, prime(k)^(2^(k-1)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Rick L. Shepherd, Jun 05 2011
STATUS
approved