login
A309811
(sigma, tau)-superchampion numbers: numbers k for which there is a positive exponent e such that sigma(k)/(k*tau(k)^e) >= sigma(j)/(j*tau(j)^e) for all j >= 1, where tau(k) is the number of divisors of k (A000005) and sigma(k) is their sum (A000203).
0
1, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 2162160, 4324320, 73513440, 367567200, 6983776800, 160626866400, 321253732800, 9316358251200, 288807105787200, 2021649740510400, 74801040398884800, 224403121196654400, 9200527969062830400, 395622702669701707200
OFFSET
1,2
LINKS
Jean-Louis Nicolas, Quelques inégalités effectives entre des fonctions arithmétiques usuelles, Functiones et Approximatio, Vol. 39, No. 2 (2008), pp. 315-334. See section 3.
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 25 2019
STATUS
approved