login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309327
a(n) = Product_{k=1..n-1} (4^k + 1).
3
1, 1, 5, 85, 5525, 1419925, 1455423125, 5962868543125, 97701601079103125, 6403069829921181503125, 1678532740564688125136703125, 1760070825503098980191468752703125, 7382273863761775568111978346806480703125, 123854010565759745011512941023673583762640703125
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = 1 + x * A(4*x) / (1 - x).
G.f.: Sum_{k>=0} 2^(k*(k - 1)) * x^k / Product_{j=0..k-1} (1 - 4^j*x).
a(0) = 1; a(n) = Sum_{k=0..n-1} 4^k * a(k).
a(n) ~ c * 2^(n*(n - 1)), where c = Product_{k>=1} (1 + 1/4^k) = 1.355909673863479380345544...
a(n) = 4^(binomial(n+1,2))*(-1/4; 1/4)_{n}, where (a;q)_{n} is the q-Pochhammer symbol. - G. C. Greubel, Feb 21 2021
MATHEMATICA
Table[Product[4^k + 1, {k, 1, n - 1}], {n, 0, 13}]
Join[{1}, Table[4^(Binomial[n, 2])*QPochhammer[-1/4, 1/4, n-1], {n, 15}]] (* G. C. Greubel, Feb 21 2021 *)
PROG
(PARI) a(n) = prod(k=1, n-1, 4^k + 1); \\ Michel Marcus, Jun 06 2020
(Sage)
from sage.combinat.q_analogues import q_pochhammer
[1]+[4^(binomial(n, 2))*q_pochhammer(n-1, -1/4, 1/4) for n in (1..15)] # G. C. Greubel, Feb 21 2021
(Magma) [n lt 2 select 1 else (&*[4^j +1: j in [1..n-1]]): n in [0..15]]; // G. C. Greubel, Feb 21 2021
CROSSREFS
Sequences of the form Product_{j=1..n-1} (m^j + 1): A000012 (m=0), A011782 (m=1), A028362 (m=2), A290000 (m=3), this sequence (m=4).
Sequence in context: A113107 A317355 A018925 * A363424 A174320 A140159
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 06 2020
STATUS
approved