login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309327 a(n) = Product_{k=1..n-1} (4^k + 1). 3
1, 1, 5, 85, 5525, 1419925, 1455423125, 5962868543125, 97701601079103125, 6403069829921181503125, 1678532740564688125136703125, 1760070825503098980191468752703125, 7382273863761775568111978346806480703125, 123854010565759745011512941023673583762640703125 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..50

FORMULA

G.f. A(x) satisfies: A(x) = 1 + x * A(4*x) / (1 - x).

G.f.: Sum_{k>=0} 2^(k*(k - 1)) * x^k / Product_{j=0..k-1} (1 - 4^j*x).

a(0) = 1; a(n) = Sum_{k=0..n-1} 4^k * a(k).

a(n) ~ c * 2^(n*(n - 1)), where c = Product_{k>=1} (1 + 1/4^k) = 1.355909673863479380345544...

a(n) = 4^(binomial(n+1,2))*(-1/4; 1/4)_{n}, where (a;q)_{n} is the q-Pochhammer symbol. - G. C. Greubel, Feb 21 2021

MATHEMATICA

Table[Product[4^k + 1, {k, 1, n - 1}], {n, 0, 13}]

Join[{1}, Table[4^(Binomial[n, 2])*QPochhammer[-1/4, 1/4, n-1], {n, 15}]] (* G. C. Greubel, Feb 21 2021 *)

PROG

(PARI) a(n) = prod(k=1, n-1, 4^k + 1); \\ Michel Marcus, Jun 06 2020

(Sage)

from sage.combinat.q_analogues import q_pochhammer

[1]+[4^(binomial(n, 2))*q_pochhammer(n-1, -1/4, 1/4) for n in (1..15)] # G. C. Greubel, Feb 21 2021

(Magma) [n lt 2 select 1 else (&*[4^j +1: j in [1..n-1]]): n in [0..15]]; // G. C. Greubel, Feb 21 2021

CROSSREFS

Cf. A027637, A052539, A053763.

Sequences of the form Product_{j=1..n-1} (m^j + 1): A000012 (m=0), A011782 (m=1), A028362 (m=2), A290000 (m=3), this sequence (m=4).

Sequence in context: A113107 A317355 A018925 * A174320 A140159 A073862

Adjacent sequences:  A309324 A309325 A309326 * A309328 A309329 A309330

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Jun 06 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 6 12:35 EDT 2022. Contains 357264 sequences. (Running on oeis4.)