OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..50
FORMULA
G.f. A(x) satisfies: A(x) = 1 + x * A(4*x) / (1 - x).
G.f.: Sum_{k>=0} 2^(k*(k - 1)) * x^k / Product_{j=0..k-1} (1 - 4^j*x).
a(0) = 1; a(n) = Sum_{k=0..n-1} 4^k * a(k).
a(n) ~ c * 2^(n*(n - 1)), where c = Product_{k>=1} (1 + 1/4^k) = 1.355909673863479380345544...
a(n) = 4^(binomial(n+1,2))*(-1/4; 1/4)_{n}, where (a;q)_{n} is the q-Pochhammer symbol. - G. C. Greubel, Feb 21 2021
MATHEMATICA
Table[Product[4^k + 1, {k, 1, n - 1}], {n, 0, 13}]
Join[{1}, Table[4^(Binomial[n, 2])*QPochhammer[-1/4, 1/4, n-1], {n, 15}]] (* G. C. Greubel, Feb 21 2021 *)
PROG
(PARI) a(n) = prod(k=1, n-1, 4^k + 1); \\ Michel Marcus, Jun 06 2020
(Sage)
from sage.combinat.q_analogues import q_pochhammer
[1]+[4^(binomial(n, 2))*q_pochhammer(n-1, -1/4, 1/4) for n in (1..15)] # G. C. Greubel, Feb 21 2021
(Magma) [n lt 2 select 1 else (&*[4^j +1: j in [1..n-1]]): n in [0..15]]; // G. C. Greubel, Feb 21 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 06 2020
STATUS
approved