login
A363424
G.f. satisfies A(x) = exp( Sum_{k>=1} A(4*x^k) * x^k/k ).
4
1, 1, 5, 85, 5535, 1422815, 1458410395, 5975113492155, 97902240525033630, 6416219161308006188750, 1681979772433159156954845846, 1763685303864317080584539713676102, 7397434088431352859937186709876628421294
OFFSET
0,3
LINKS
FORMULA
A(x) = Sum_{k>=0} a(k) * x^k = 1/Product_{k>=0} (1-x^(k+1))^(4^k * a(k)).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d * 4^(d-1) * a(d-1) ) * a(n-k).
PROG
(PARI) seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, subst(A, x, 4*x^k)*x^k/k)+x*O(x^n))); Vec(A);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 01 2023
STATUS
approved