login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309324
Expansion of Sum_{k>=1} psi(k) * x^k/(1 + x^k), where psi = Dedekind psi function (A001615).
1
1, 2, 5, 2, 7, 10, 9, 2, 17, 14, 13, 10, 15, 18, 35, 2, 19, 34, 21, 14, 45, 26, 25, 10, 37, 30, 53, 18, 31, 70, 33, 2, 65, 38, 63, 34, 39, 42, 75, 14, 43, 90, 45, 26, 119, 50, 49, 10, 65, 74, 95, 30, 55, 106, 91, 18, 105, 62, 61, 70, 63, 66, 153, 2, 105, 130, 69, 38, 125, 126, 73
OFFSET
1,2
COMMENTS
Dirichlet convolution of sum of odd divisors function with characteristic function of squarefree numbers.
LINKS
FORMULA
a(n) = Sum_{d|n} (-1)^(n/d+1) * psi(d).
a(n) = Sum_{d|n} mu(n/d)^2 * A000593(d).
Multiplicative with a(2^e) = 2, and a(p^e) = (p^e*(p+1)-2)/(p-1) for odd primes p. - Amiram Eldar, Dec 01 2020
Sum_{k=1..n} a(k) ~ (5/8) * n^2. - Amiram Eldar, Nov 06 2022
MATHEMATICA
nmax = 71; CoefficientList[Series[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k] x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[Sum[MoebiusMu[n/d]^2 Plus @@ Select[Divisors@ d, OddQ], {d, Divisors[n]}], {n, 1, 71}]
f[2, e_] := 2; f[p_, e_] := (p^e*(p+1)-2)/(p-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 01 2020 *)
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 2, (f[i, 1]^f[i, 2]*(f[i, 1]+1)-2)/(f[i, 1]-1))); } \\ Amiram Eldar, Nov 06 2022
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Jul 23 2019
STATUS
approved