OFFSET
1,2
COMMENTS
Dirichlet convolution of sum of odd divisors function with characteristic function of squarefree numbers.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = Sum_{d|n} (-1)^(n/d+1) * psi(d).
a(n) = Sum_{d|n} mu(n/d)^2 * A000593(d).
Multiplicative with a(2^e) = 2, and a(p^e) = (p^e*(p+1)-2)/(p-1) for odd primes p. - Amiram Eldar, Dec 01 2020
Sum_{k=1..n} a(k) ~ (5/8) * n^2. - Amiram Eldar, Nov 06 2022
MATHEMATICA
nmax = 71; CoefficientList[Series[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k] x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[Sum[MoebiusMu[n/d]^2 Plus @@ Select[Divisors@ d, OddQ], {d, Divisors[n]}], {n, 1, 71}]
f[2, e_] := 2; f[p_, e_] := (p^e*(p+1)-2)/(p-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 01 2020 *)
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 1] == 2, 2, (f[i, 1]^f[i, 2]*(f[i, 1]+1)-2)/(f[i, 1]-1))); } \\ Amiram Eldar, Nov 06 2022
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Jul 23 2019
STATUS
approved