login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309204 Numerators of coefficients of odd powers of x in expansion of f(x) = x cos (x cos (x cos( ... . 7
1, -1, 13, -541, 9509, -7231801, 1695106117, -567547087381, 36760132319047, -151856004814953841, 113144789723082206461, -103890621918675777804301, 8866964955352146292017421, -8002609021370033485261033939, 47038068678960604511245887564401, -421635069078222570953208470234640901 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

f(x) satisfies f(x) = x * cos(f(x)), and the coefficients can be determined from this.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..100

W. M. Gosper, Material from Bill Gosper's Computers & Math talk, M.I.T., 1989, i+38+1 pages, annotated and scanned, included with the author's permission. (There are many blank pages because about half of the original pages were two-sided, half were one-sided.)

W. M. Gosper, Superposition of plots -4 < z < 4 of z, cos z, z cos z, cos( z cos z), z cos(z cos z), ..., Jul 29 2019

FORMULA

From Christophe Vignat, Jan 06 2020: (Start)

Numerator of (-1)^n/(2^(2*n+1)*(2*n+1)!)*Sum_{k=0..2*n+1} binomial(2*n+1,k)*(2*k-2*n-1)^(2*n).

Numerator of 1/(2*n+1)*(coefficient of t^(2*n) in cos(t)^(2*n+1)).

Numerator of 1/(2*n+1)*(residue of (cos(t)/t)^(2*n+1) at t=0). (End)

EXAMPLE

f(x) = x - (1/2)*x^3 + (13/24)*x^5 - (541/720)*x^7 + (9509/8064)*x^9 - (7231801/3628800)*x^11 + (1695106117/479001600)*x^13 - (567547087381/87178291200)*x^15 + ...

Coefficients are: 1, -1/2, 13/24, -541/720, 9509/8064, -7231801/3628800, 1695106117/479001600, -567547087381/87178291200, 36760132319047/2988969984000, -151856004814953841/ 6402373705728000, 113144789723082206461/2432902008176640000, ...

MAPLE

M := 20;

f := add(c[i]*z^(2*i+1), i=0..M);

f := series(f, z, 2*M+3);

f2 := series(z*cos(f)-f, z, 2*M+3);

for i from 0 to M do e[i]:=coeff(f2, z, 2*i+1); od:

elis:=[seq(e[i], i=0..M)]; clis:=[seq(c[i], i=0..M)];

t1 := solve(elis, clis); t2 := op(t1);

t3 := subs(t2, clis);

map(numer, t3);

MATHEMATICA

seq[n_] := Module[{p, k}, p = 1 + O[x]; For[k = 2, k <= n, k++, p = Cos[x*p]]; p] // CoefficientList[#, x^2] & // Numerator;

seq[16] (* Jean-Fran├žois Alcover, Sep 07 2019, from PARI *)

Table[1/(2*n + 1)* SeriesCoefficient[Cos[t]^(2*n + 1), {t, 0, 2*n}], {n, 0, 15}] // Numerator; (* Christophe Vignat, Jan 06 2020 *)

Table[1/(2*n + 1)*Residue[(Cos[z]/z)^(2*n + 1), {z, 0}], {n, 0, 15}] // Numerator; (* Christophe Vignat, Jan 06 2020 *)

PROG

(PARI) \\ here F(n) gives n terms of power series.

F(n)={my(p=1+O(x)); for(k=2, n, p=cos(x*p)); p}

seq(n)={my(v=Vec(F(n))); vector(n, k, numerator(v[2*k-1]))} \\ Andrew Howroyd, Aug 17 2019

CROSSREFS

Cf. A309205.

Sequence in context: A281055 A030256 A023332 * A229263 A308865 A143601

Adjacent sequences:  A309201 A309202 A309203 * A309205 A309206 A309207

KEYWORD

sign,frac

AUTHOR

N. J. A. Sloane, Jul 28 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 18:24 EDT 2022. Contains 353823 sequences. (Running on oeis4.)