login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309204
Numerators of coefficients of odd powers of x in expansion of f(x) = x cos (x cos (x cos( ... .
8
1, -1, 13, -541, 9509, -7231801, 1695106117, -567547087381, 36760132319047, -151856004814953841, 113144789723082206461, -103890621918675777804301, 8866964955352146292017421, -8002609021370033485261033939, 47038068678960604511245887564401, -421635069078222570953208470234640901
OFFSET
1,3
COMMENTS
f(x) satisfies f(x) = x * cos(f(x)), and the coefficients can be determined from this.
LINKS
W. M. Gosper, Material from Bill Gosper's Computers & Math talk, M.I.T., 1989, i+38+1 pages, annotated and scanned, included with the author's permission. (There are many blank pages because about half of the original pages were two-sided, half were one-sided.)
FORMULA
From Christophe Vignat, Jan 06 2020: (Start)
Numerator of (-1)^n/(2^(2*n+1)*(2*n+1)!)*Sum_{k=0..2*n+1} binomial(2*n+1,k)*(2*k-2*n-1)^(2*n).
Numerator of 1/(2*n+1)*(coefficient of t^(2*n) in cos(t)^(2*n+1)).
Numerator of 1/(2*n+1)*(residue of (cos(t)/t)^(2*n+1) at t=0). (End)
EXAMPLE
f(x) = x - (1/2)*x^3 + (13/24)*x^5 - (541/720)*x^7 + (9509/8064)*x^9 - (7231801/3628800)*x^11 + (1695106117/479001600)*x^13 - (567547087381/87178291200)*x^15 + ...
Coefficients are: 1, -1/2, 13/24, -541/720, 9509/8064, -7231801/3628800, 1695106117/479001600, -567547087381/87178291200, 36760132319047/2988969984000, -151856004814953841/ 6402373705728000, 113144789723082206461/2432902008176640000, ...
MAPLE
M := 20;
f := add(c[i]*z^(2*i+1), i=0..M);
f := series(f, z, 2*M+3);
f2 := series(z*cos(f)-f, z, 2*M+3);
for i from 0 to M do e[i]:=coeff(f2, z, 2*i+1); od:
elis:=[seq(e[i], i=0..M)]; clis:=[seq(c[i], i=0..M)];
t1 := solve(elis, clis); t2 := op(t1);
t3 := subs(t2, clis);
map(numer, t3);
MATHEMATICA
seq[n_] := Module[{p, k}, p = 1 + O[x]; For[k = 2, k <= n, k++, p = Cos[x*p]]; p] // CoefficientList[#, x^2] & // Numerator;
seq[16] (* Jean-François Alcover, Sep 07 2019, from PARI *)
Table[1/(2*n + 1)* SeriesCoefficient[Cos[t]^(2*n + 1), {t, 0, 2*n}], {n, 0, 15}] // Numerator; (* Christophe Vignat, Jan 06 2020 *)
Table[1/(2*n + 1)*Residue[(Cos[z]/z)^(2*n + 1), {z, 0}], {n, 0, 15}] // Numerator; (* Christophe Vignat, Jan 06 2020 *)
PROG
(PARI) \\ here F(n) gives n terms of power series.
F(n)={my(p=1+O(x)); for(k=2, n, p=cos(x*p)); p}
seq(n)={my(v=Vec(F(n))); vector(n, k, numerator(v[2*k-1]))} \\ Andrew Howroyd, Aug 17 2019
CROSSREFS
Cf. A309205.
Sequence in context: A281055 A030256 A023332 * A229263 A308865 A143601
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Jul 28 2019
STATUS
approved