The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309076 The Zeckendorf representation of n read as a NegaFibonacci representation. 1
 0, 1, -1, 2, 3, -3, -2, -4, 5, 6, 4, 7, 8, -8, -7, -9, -6, -5, -11, -10, -12, 13, 14, 12, 15, 16, 10, 11, 9, 18, 19, 17, 20, 21, -21, -20, -22, -19, -18, -24, -23, -25, -16, -15, -17, -14, -13, -29, -28, -30, -27, -26, -32, -31, -33 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Every nonnegative integer has a unique Zeckendorf representation (A014417) as a sum of nonconsecutive Fibonacci numbers F_{k}, with k>1. Likewise, every integer has a unique NegaFibonacci representation as a sum of nonconsecutive F_{-k}, with k>0 (A215022 for the positive integers, A215023 for the negative). So the F_{k} summing to n are transformed to F_{-k+1} and summed. Since the representations are unique and mapped one-to-one, every integer appears exactly once in the sequence. a(n) changes sign at each Fibonacci number, since NegaFibonacci representations with an odd number of fibits are positive and those with an even number are negative. REFERENCES D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.3, p. 169. E. Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972. LINKS Garth A. T. Rose, Table of n, a(n) for n = 0..1000 Sean A. Irvine, Java program (github) Wikipedia, Zeckendorf's theorem EXAMPLE 10 is 8 + 2, or F_6 + F_3. a(10) is then F_{-5} + F_{-2} = 5 + (-1) = 4. PROG (Sage) def a309076(n):     result = 0     lnphi = ln((1+sqrt(5))/2)     while n > 0:         k = floor(ln(n*sqrt(5)+1/2)/lnphi)         n = n - fibonacci(k)         result = result + fibonacci(1 - k)     return result CROSSREFS Cf. A000045, A014417, A215022, A215023. Sequence in context: A265339 A182865 A131469 * A073078 A034799 A008985 Adjacent sequences:  A309073 A309074 A309075 * A309077 A309078 A309079 KEYWORD base,sign AUTHOR Garth A. T. Rose, Jul 10 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 6 09:57 EDT 2020. Contains 333273 sequences. (Running on oeis4.)