The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A215023 NegaFibonacci representation for -n. 9
 0, 10, 1001, 1000, 1010, 100101, 100100, 100001, 100000, 100010, 101001, 101000, 101010, 10010101, 10010100, 10010001, 10010000, 10010010, 10000101, 10000100, 10000001, 10000000, 10000010, 10001001, 10001000, 10001010, 10100101, 10100100, 10100001, 10100000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Let F_{-n} be the negative Fibonacci numbers (as defined in the first comment in A039834): F_{-1}=1, F_{-2}=-1, F_{-3}=2, F_{-4}=-3, F_{-5}=5, ..., F_{-n}=(-1)^(n-1)F_n. Every integer has a unique representation as n = Sum_{k=1..r} c_k F_{-k} for some r, where the c_k are 0 or 1 and no two adjacent c's are 1. Then a(n) = c_r ... c_3 c_2 c_1. REFERENCES Donald E. Knuth, The Art of Computer Programming, Volume 4A, Combinatorial algorithms, Part 1, Addison-Wesley, 2011, pp. 168-171. LINKS Amiram Eldar, Table of n, a(n) for n = 0..10000 M. W. Bunder, Zeckendorf representations using negative Fibonacci numbers, The Fibonacci Quarterly, Vol. 30, No. 2 (1992), pp. 111-115. Donald E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks & Techniques; Binary Decision Diagrams, a pre-publication draft of section 7.1.3, 2009, pp. 36-39. Wikipedia, NegaFibonacci coding. EXAMPLE -4 = -3 - 1 = F_{-4} + F_{-2}, so a(4) = 1010. MATHEMATICA ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]]; f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i]; a[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 10^(i - 1); k -= Fibonacci[-i]]; s]; Table[a[n], {n, 0, -100, -1}] (* Amiram Eldar, Oct 15 2019 *) PROG (PARI) a(n)=my(s=0, k=0, v); while(s 17. Amiram Eldar, Oct 15 2019] CROSSREFS Cf. A039834, A215022, A215025, A000045, A014417, A003714. Sequence in context: A013715 A135612 A110147 * A071925 A139101 A015482 Adjacent sequences:  A215020 A215021 A215022 * A215024 A215025 A215026 KEYWORD nonn,base AUTHOR N. J. A. Sloane, Aug 03 2012 EXTENSIONS a(18) inserted by Amiram Eldar, Oct 11 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 04:10 EDT 2021. Contains 345354 sequences. (Running on oeis4.)