login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A308352 Number of k-ary quasitrivial semigroups that have no neutral element on an n-element set. 2
0, 2, 8, 58, 492, 5074, 60888, 835482, 12895796, 221169970, 4172486496, 85872215290, 1914575169756, 45970251182418, 1182618181384424, 32451961380002458, 946163712877067460, 29208900504551394610, 951798961321369842864, 32647628386008050898810 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Number of k-ary associative and quasitrivial operations that have no neutral element on an n-element set.

LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..413

M. Couceiro, J. Devillet All quasitrivial n-ary semigroups are reducible to semigroups, arXiv:1904.05968 [math.RA], 2019.

Jimmy Devillet, Miguel Couceiro, Characterizations and enumerations of classes of quasitrivial n-ary semigroups, 98th Workshop on General Algebra (AAA98, Dresden, Germany 2019).

FORMULA

a(n) = A292932(n) - n*A292932(n-1) = A292932(n) - A292933(n) for n >= 1.

a(n) ~ n! * (4-r) / ((r-1) * (r-3)^(n+1)), where r = -LambertW(-1, -2*exp(-3)). - Vaclav Kotesovec, Jun 05 2019

E.g.f.: (1 - x)/(x + 3 - 2*exp(x)). - Andrew Howroyd, Aug 19 2019

MATHEMATICA

nmax = 20; Rest[CoefficientList[Series[(1 - x)/(3 - 2*E^x + x), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Jun 05 2019 *)

PROG

(PARI) seq(n)={Vec(-1+serlaplace((1-x)/(x+3-2*exp(x))) + O(x*x^n), -n)} \\ Andrew Howroyd, Aug 19 2019

CROSSREFS

Cf. A292932, A292933.

Sequence in context: A229529 A007347 A027257 * A185898 A063074 A319590

Adjacent sequences:  A308349 A308350 A308351 * A308353 A308354 A308355

KEYWORD

nonn,easy

AUTHOR

J. Devillet, May 21 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 12:10 EDT 2020. Contains 333125 sequences. (Running on oeis4.)